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Third Pillar: Computational Science

Al: Techniques that enable machines to have human-level of intelligence
ML: Learn patterns in data and perform predictions

Data Science: Methods to draw insights from data

(through math, stats, visualization, etc.)
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Third Pillar: Computational Science

Computational Science is an important tool that we can use to
incorporate physical invariances into learning, but until recently it
was missing from mainstream ML.

“Computational Science can and

. It can explore the effects of thousands of scenarios for or in Data
lieu of actual experiment and be used to study events beyond the
reach of expanding the boundaries of experimental science”

—Tinsley Oden, 2013
Theory

To make further progress in ML it is crucial that we incorporate

computational science into learning.
Hardware

Artificial Maths &
Statistics
visualization

EDA

Intelligence

Computation

al Science Largely missing from ML

today

E Dr. J. Tinsley Oden's Commemorative Speech: “THE THIRD PILLAR: The Computational Revolution of Science i
E and Engineering”, Honda Prize, 2013. E
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MLPs are Universal Function Approximators

Now let’s take a step back and see what are Neural Networks?

y = f(W,f(W,-x) )

--------------------------------------------------------------------------------------------------------------------

i G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4):303—-314, 1989. :
' K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359-366, 1989. !
1 Kriegeskorte N, Golan T. Neural network models and deep learning-a primer for biologists. arXiv preprint arXiv. 1902. ‘
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MLPs are Universal Function Approximators

Now let’s take a step back and see what are Neural Networks?
y = f(W,f(W,x))

4 Theorem: There exists a N
Boolean function of n>2
variables that requires at least
2"/n Boolean gates, regardless

\_ of depth! Y,

--------------------------------------------------------------------------------------------------------------------

i G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4):303—-314, 1989. :
' K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359-366, 1989. !
1 Kriegeskorte N, Golan T. Neural network models and deep learning-a primer for biologists. arXiv preprint arXiv. 1902. ‘
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Universal Function *Approximation*

Important: Universal Function Approximation theorem only considers approximation error, and
not trainability and/or generalizability of the NN.

We can broadly characterize NN performance into three main types:
s Approximation error to ground truth function

% Generalization to unseen data

% Trainability of the model

* Universal approximation theorem only considers the first one.
« Moreover, it provides no method to train a model to get that approximation

— naive method using the basis function in the previous slide can require exponentially
large number of neurons even for simple functions
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Extremely Overparameterized Models
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Exponentially Expensive Models to Train
Training FLOPs Scaling for SOTA CV, NLP, and Speech Models
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Improving Approximation Error with Invariances

» By incorporating domain specific invariances, we can significantly improve the generalization
properties of NNs.

Examples in computer vision:
« Translational invariance => Use of convolutional layers
» Spatial invariance (be able to recognize features regardless of skew, angle, or direction)

RES o

Spatial and Translational
Invariance

10
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Improving Approximation Error with Invariances

Classification Results (CLS)

0.3
One reason CNNs has been so -
S
successful in vision is the 5
.§ 0.15
translational invariance that is s B
2 16.7% \ 23.3% |
incorporated in them by design! T 005 3 3
) [

2010 2011 2012 2013 2014 2015 2016 2017

ImageNet Classification Error

i Chart credit: Prudhvi Gnv ! 11



Physical Laws as Additional Invariances

There are many more invariances other than translational invariance:
— Physics-based laws of nature: Conservation of mass, momentum, energy
How can these invariances help?

Three scenarios of
Physics-Informed Learning Machines

Lots of Physics Some Physics No Physics

This is the common view of how
Physics can help training.
But even in the Big Data regime
incorporating Physics
can be helpful

SRR U ‘ ey & *
Small Data Some Data Big Dat

! Illustration Credit: Prof. Karniadakis ' 12
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Physical Laws as Additional Invariances

There are many more invariances other than translational invariance:
— Physics-based laws of nature: Conservation of mass, momentum, energy
How can these invariances help?

Less Data More Data
\ ] |\
| |
Physical Invariances can help Physical Invariances can help
Improve Generalization or make the model easier to train
regularize training with less parameters

The main question is how can we incorporate these invariances into learning?

13
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Methods for Incorporating Physics into Learning

» Method 1: Train on massive amount of data (and hope) that the NN trains with good
performance/generalization

Let's use Burgers’ equation as an example (a fundamental PDE used for modeling fluid
dynamics, non-linear acoustics, gas dynamics, traffic flow, etc.)

0.75
U + Uy — Uz =0, x € (—1,1),2 € (0,1 035
t x rxT 3 ) ) ) s
8 0.00
. . . . _0‘25
+Initial /Boundary Conditions i
—0.75
t
e ettt
\ [1] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. |
i Journal of Computational Physics. 2019 Feb 1;378:686-707. 1
E [2] Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks. 1998 Sep,;9(5):987-1000. 1 15



© Pallas Group, UCB

Methods for Incorporating Physics into Learning

> Method 1: Train on massive amount of data (and hope) that the NN trains with good
performance/generalization

Obtain/Simulate a lot Train the NN on this

of data dataset
i wh_'_ e marrerron B 0.7
——— X Data (100 nainte) 0.75

— X Data (100 nainte) .- 0.75

ta (100 points)
€ -5 .
-0.25
.5 -0.50

-0.75

0.0 0.2 0.4 0.6 0.8
t

Main problems:
* No guarantee that the model obeys the conservation laws
« May require a lot of training data and obtaining/simulating these data is not always feasible

1 1
\ [1] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. |
i Journal of Computational Physics. 2019 Feb 1;378:686-707. 1
E [2] Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks. 1998 Sep,;9(5):987-1000. i

16
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Methods for Incorporating Physics into Learning

« Method 2: Enforce Physical laws as hard constraints either in:
— NN Architecture: This is an open problem
— Optimization: Very difficult to train the NN with such constraints

Train the NN on this
dataset

min £ = s — w3,
)

- a( X, t;)

s.t. U+ uuy — Uy, = 0.

[1] Xu K, Darve E. Physics constrained learning for data-driven inverse modeling from sparse observations. arXiv preprint arXiv:2002.10521. 2020

Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational Physics. 2019 Feb 1,378:686-707.

[2] Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks. 1998 Sep,;9(5):987-1000. (only satisfies BCs exactly)

17
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Methods for Incorporating Physics into Learning
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Method 3: Use penalty methods and add the PDE residual to the loss as a soft constraint.

Data Loss Function:

L,=|tu- qu

o Gy 4 Uty — Tpy € €
Aﬁw ) l:b(xv t=0)
Uza u(x,t) el
Uy

Physics Loss Function:

Lr = |t + Uy — Upe|3

min £ = ﬁu —+ )\]:[:]:

0

18



Physics Informed Neural Networks

© Pallas Group, UCB

 Method 3: Use penalty methods and add the PDE residual to the loss as a soft constraint.
— Easy to implement, and works with automatic differentiation with any NN architecture

— Does not require a mesh or a numerical solver for the PDE

— Can (in theory) work for high dimensional problems, and complex PDEs

» For example, PDEs containing integral operators which are difficult to solve with

finite difference methods.

us + vty — (0.01/m)ug, =0,
u(0,x) = —sin(wz),
u(t,—1) = u(t,1) = 0.

__________________________________________________________________________________

E Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for

! solving forward and inverse problems involving nonlinear partial differential equations. Journal of
\ Computational Physics. 2019.

i Lagaris IE, Likas A, Fotiadis DI. Artificial neural networks for solving ordinary and partial differential equations.

E IEEE transactions on neural networks. 1998 Sep;9(5):987-1000.

______
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But this is not the entire story

» There are a lot of subtleties in adding PINN’s soft-constraint.

To study this, we chose three families of PDEs:
— Advection (aka wave equation)
— Reaction
— Reaction-Diffusion

For all of these cases we observed that PINNs failed to learn the relevant Physics, since
there are many moving parts in this problem, than what appears at first.

min £ = [ — ull3 + Azl + @l — a3

20
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Advection Equation

X

e | -

ou
En +
u(x,0) = sin(z), x €,
u(0,t) = u(2m,t) te[0,T].

ou
— = 0.t T
5833 0, ze€Q, tel0,T],

memﬁ = Ar|us + Bﬂmug PDE Residual

+ ’fL(:L‘, 0) — sm(:c) ||% Initial Condition

+ ’&(Z‘ = 27‘(’) — ’&(ib = O)”% Boundary Condition

___________________________________________________________________________________________________________________________

i Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021. 22



PINN can fail to learn Advection

ol
5 -»—Relative error = Absolute error
\ N 710"
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1 Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021. i 23
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PINN can fail to learn Advection

Exact Solution PINN Prediction Error
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PINN can fail to Learn Fisher Equation

M3

ou d*u :
E—Pu(l—u)—V@ZO, z e, te(0,T], ,
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Characterizing the Failure Points:

Loss Landscape

To better understand the problem, let’s first look at the optimization loss landscape.
The loss function that we are dealing with is quite complex and non-convex, so there is no
guarantee that the optimizer can find a good solution.

X
oy

CHENNWW A
VouvouLouo o
™

(b) 8 =10.0 (c) B =20.0 (d) 8 =30.0 (e) B =40.0
B 1 10 20 30 40
Relative error | 7.84 x 1073 | 1.08 x 1072 | 7.50 x 10~ | 8.97 x 10~1 | 9.61 x 107!
Absolute error | 3.17 x 1073 | 6.03 x 1072 | 4.32 x 1071 | 5.42 x 107! | 5.82 x 10~}

As we increase the wave speed, the loss landscape becomes increasingly harder to optimize
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Characterizing Failure Points:

Loss Landscape

« What if we adjust the weight of the PDE loss?
» Would the loss landscape become easier to optimize if we use a smaller or larger weight?

Us + ﬁ’fbeg PDE Residual

& 05 Tlio

(C)A:1x10_3 (d) A=1x10"1

27



Characterizing Failure Points:
Loss Landscape

51‘ -0.

>_1010

05 €

b)) A=1x10"° (¢ ,\q:

05

A 1x10% | 1x10%]1x103|1x101|1x10!
Relative error 1.69 1.65 1.00 1.08 0.982
Absolute error 0.987 0.987 0.623 0.647 0.595

min £ = Az||d; + Bz |3

+||tu(z,0) — sm(az)”%
+||t(x = 27) — a(x = 0)||§

PDE Residual

As we reduce A the

© Pallas Group, UCB

optimization gets easier but
PINN'’s solution has ~100%

error

28
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Rethinking PINNs: Curriculum Learning

* Curriculum Learning: Start with simple physical constraints and progressively introduce the
complexities throughout learning

— First let the NN learn the simple problems, before penalizing it for learning the target PDE

Example: Initially train the NN with small velocities, and slowly increase the velocity to the target value
-»Regular training = Curriculum training
30
25|
2071
X 157
10}
5|
Oi\

Training duration
29



Rethinking PINNs: Curriculum Learning

—-Regular training = Curriculum training
30t
25¢

~ . 20¢
+||(x, 0) — sin(x)]3 2 15

(z = 27) —i(x = 0)|3
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Rethinking PINNs: Curriculum Learning
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Regular tminténg PINN solution Curriculum tt’r'a,i'n,i'n,g PINN
Jor B =30 solution for B = 30
Regular PINN | Curriculum training
1D convection: 8 = 20 | Relative error 7.50 x 1071 9.84 X 10—3
Absolute error | 4.32 x 10~! 5.42 X 103
1D convection: 8 = 30 | Relative error 8.97 x 101 2.02 x 10—2
Absolute error | 5.42 x 10" 1.10 x 10—4
1D convection: 8 = 40 | Relative error 9.61 x 101 5.33 x 102
Absolute error | 5.82 x 10! 2.69 x 10— 2
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Rethinking PINNs: Curriculum Learning

» This approach works quite well for reaction problem as well

0
_u_pu(l—’u,):(), xEQ,tE(O,T],

ot
u(x,0) = h(x), =z €.

—»-Regular training relative error— Curriculum training relative error
-+-Regular training absolute error - Curriculum training absolute error

0 o’

= S

§ ’51071 §

o 10! ] ;

0.4 t 0.6 ¥ 4 d 5 g t 0.6 0.8 _é T;’

0 L, a

Regular training PINN solution Curriculum training PINN o ’;10 ’<

for p =10 solution for p =10 . ‘ ]
10° 10!
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Rethinking PINNs:

Pose the Problem as Sequence to Sequence Learning

PINN formulation tries to predict the entire space-time simultaneously.

— This is a very difficult task/function to approximate.
An alternative is to pose the problem as sequence to sequence learning, where PINN learns
to predict the solution in a finite time horizon, and iteratively predicts next time steps

x  Initial condition points x  Boundary points x  Collocation points
x b4 ol X
o] . &g%")g%ﬁ;&é&”‘xx%x&xxﬂx%%;% of .
X ¢ x)o%xy ¥ yox X &X%W;?X‘ x ><§>3?2< g xxx z&x x»?%x
ST S o s E T S
5 xg( x ¥ X x ox Xy X% X xx < x e 5 Q& x
X")§%X%>¢< 2% % WS x i‘x;x >3£><><>°‘x>§§?°‘ ® 2(§<><xx
% x et 3 x;f;g(x X K X
4 o x L X Xy X XX x % 4
TR R o U s I T L }”%
% x K X NEY X x xxxgs)i« xx’(xxx XW v X
3hxx x xxx X x x x X X x x x 3
P Sl T R SR S [
x );((x&« ><:><>2( x QS; » >:<>< X% % X% XXX XX 5
20 % Fx X)gx xxixx&ag X, x )zxxwx % i ><>2()(>< 2l X
x % 3{5 X KX X% % ;éx”(& XXX X o
R T B L A D L L LM I S Y &
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1 T ol e R
x x X x X
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Regular PINN Training Seq2Seq Training
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Rethinking PINNs: Seq2Seq Learning for

Reaction-Diffusion Problem

2
%_Vﬂ_pu(l—u)zo, QZ’EQ,tE(OaT]a

ot Ox?
u(x,0) = h(z), = €.

0.2 0.4 0.6 0.8 . 8.0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 06 0.8 10

t t *

Exact solution for p = 5, v=3 Regular PINN solution for p = 5, v=3 seqg2seq PINN solution for p = 5, v=3
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Rethinking PINNs: Seq2Seq Learning for

Reaction-Diffusion Problem

© Pallas Group, UCB

Seq2Seq approach can get significantly lower error than regular PINN which tries to predict the
entire state space at once

Entire state space At = 0.05 At = 0.1
v=2,p=>5 | Relative error 5.07 x 1071 2.04 x 1072 | 1.18 x 102
Absolute error 2.70 x 10~ 1.06 x 10~ | 6.41 x 10—°
v =3, p=>5 | Relative error 7.98 x 107! 1.92 x 1072 | 1.56 x 102
Absolute error 4.79 x 101 1.01 x 1072 | 8.17 x 10—3
v=4, p=25 | Relative error 8.84 x 10~1 2.37x 1072 | 1.59 x 10—2
Absolute error 5.74 x 1071 1.15 x 10~% | 8.01 x 10—°
v=2>5, p=>5 | Relative error 9.35 x 10~1 2.36 X 102 | 2.39 x 102
Absolute error 6.46 x 1071 1.09 x 102 | 1.15 x 1072
v =6, p=>5 | Relative error 9.60 x 107! 2.81 x 1072 | 2.69 x 102
Absolute error 6.84 x 1071 1.17 x 1072 | 1.28 x 1072

35
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Conclusions

« PINNs are easy to implement but there are many subtle issues associated with their training

* PINNSs can fail to learn simple problems such as advection, reaction, and/or reaction-
diffusion problems with non-trivial coefficients
* Analyzing the problem shows that while the NN has enough capacity to learn the solution,

the optimization problem with PINN’s soft regularization becomes very difficult to solve
Two promising solutions are:

* Curriculum Learning: First train PINNs with simple constraints and progressively make it

more complex

« Sequence to Sequence Learning: Instead of trying to predict the entire space-time at once,

pose the problem as Seq2Seq and let PINN learn to predict smaller time horizons

i Paper: Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible
! failure modes in physics-informed neural networks. NeurlPS, 2021.
i Code: https://github.com/alk12/characterizing-pinns-failure-modes
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Open Problems

There are many more open problems in PINNSs:
* Optimization:

— Unlike all other classical ML tasks, PINNs cannot be optimized with mini-batch (SGD,
ADAM, etc. all fail). The only method that works is LBFGS with full batch size

— This makes training PINNs very slow and hard to optimize

* NN Architecture:

— Classical NN architecture may not be optimal for PINNs. Need to investigate alternative
architectures that are more suited for the continuous nature of the problem.

— Need to investigate how the architecture should be changed as the underlying dynamics
change

« Elliptical vs Hyperbolic vs Parabolic PDEs may need different architectures

37
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