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Most Focus has been on CV
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Executive Summary:

New Opportunities for DSA

» Emerging Al applications with low arithmetic intensity
— Recommendation Systems, that need DSA with
« Large Memory Systems
 Fast Interconnect
« Efficient Prefetching and Cache Hierarchy
> Al at the Edge:
— All Al domains (CV, NLP, RecSys, ASR, Robotics/RL, etc.)
» Low-precision Inference
 Unified software interface for better programmability
» Emerging Al Optimization Algorithms:
— Moving beyond SGD based training to second-order methods
— Need for DSA that supports fast Randomized algorithms
— Important applications for Scientific ML/Computing .
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Al and Compute
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(Not the Entire Picture)

Training FLOPs Scaling for SOTA CV, NLP, and Speech Models
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« The wrong way to interpret this trend is to only focus on increasing peak FLOPs of
Al accelerators => Not optimal for emerging Al applications
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Al and Memory Wall

Al and Memory Wall
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Al and Memory Wall

Scaling of Peak hardware FLOPS, and Memory/Interconnect Bandwidth
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Majority of Al Workloads in Datacenter is RecSys

(not NLP or CV)

« Recommendation systems, account for more than 80% of Al Cycles in FB.
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! Gupta U, et al. The Architectural Implications of Facebook’s DNN-based Personalized Recommendation, HPCA'20. 10



Majority of Al Workloads in Datacenter is RecSys
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(not NLP or CV)

 Most academic papers have been
focusing on optimizing:
— CV: 81.6% papers
— NLP: 6.5% papers

* Only 2% of papers in top
conferences are considering
recommendation systems

But this is rapidly changing.
RecSys is now part of
MLCommons/MLPerf benchmark.

Machine Learning Application Space

Sentiment Recommendation
Analysis (1.1%) _\ (2.2%)

RNN Translator
(5.4%)

o

Face ID
(3.3%)

Object

Segmentation
(3.3%)

The breakdown of application spaces of ML related papers published in HPCA,
ASPLOS, ISCA, and MICRO over the last five years. Source: C. Wu et al.

11
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How does this impact Al Hardware?

Rec Systems have extremely low arithmetic intensity

This trend is changing fast because:

Memory friendly application

* RecSys models are no longer using old NCF type are in the grey region
models
. Convolutional
* New models are using DNN based approaches Neura.INets
similar to NLP but with much large model sizes &
(=
(]
— Importantly they have orders of magnitude =
% Neural Machine
smaller Arithmetic Intensity € Translation
§ Recommendation
:Z Systems

Size of Model & Neurons

Arithmetic Intensity = #Mfiﬁgpgps

Image: Courtesy of M. Smelyanskiy 12
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Structure of a Recommendation System

(DLRM)
« Find the most appropriate ad (Y), for a user (u) with a past history (X;)

argmax P(Y|u, X;)
Y

« This is done in two phases: Retrieval and Ranking

Rgtrieval_ Phase: Ranking Phase:
Use Lightweight Models DLRM

226 Sule
]

Lookup )

| Dense | | Sparse | Sparse |
e | Features | | Features | i Features |
13
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Ranking Phase

(DLRM)
argmax P(Y|u, X;)
Y

4= Compute
= 0/|1/0|212|0|0 |1 |X
‘ Feature Interaction ‘ 4= Communication A
L |
[ Average Pooling ]
EMB .
Look 4= \lemory capacity )
I °° P & bandwidth
E’"“‘-)-e’-‘-s;"\i E’——V—Svp—ar;"*mni .~ Sparse 4= |nputs from network « >
. Features | | Features | . Features | ) O(100B) i
Structure of a modern Recommendation lllustration of Embedding lookup
System

i Naumov M, Kim J, Mudigere D, Sridharan S, Wang X, Zhao W, Yilmaz S, Kim C, Yuen H, Ozdal M, Nair K. Deep Learning Training in Facebook Data Centers: Design !
of Scale-up and Scale-out Systems. arXiv:2003.09518. i 14
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RecSys is orders of magnitude Bigger in size than CV

(and NLP)

« Recommendation Systems have very low arithmetic intensity

4= Compute
I #Non-zeros #Sparse  #Dense Size (GB) MPI
o A 100 8 x 10  7x10° 300 100
4mm Communication B 100 2% 1019 2%10* 600 30
l C 500 6x 101 2% 105 2,000 75
EMB EMB - D 500 1 x 10" 4 x10% 6,000 150
4= \emory capacity E 500 2 x 101 7x10% 110,000 128

Lookup Lookup & bandwidth
p— ] ........ NP I ...... S p— I ....... \ Existing model sizes are as large as 10TB!
Dense | | Sparse | Sparse | gy |nnuts from network

Features | | Features | . Features |

____________________________________________

i Mikhail Smelyanskiy, Al at Facebook Datacenter Scale, Invited Lecture in UC Berkeley EE 290, 2020.

i Baidu: Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads Systems, W. Zhao et al. 15
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Comparison with Other Tasks

Category Model Type Model Size Arithmetic Intensity Maximum Live
(#Params) Activations
Computer Vision ResNeXt101-32x4-48 43-829M 300 (Avg) 2-29M
100 (Min)
Language GRU/LSTM/Transformer 10M-1B 2-60 > 100K
Fully Connected 1-10M 20-200 > 10 K
Recommendation
Embeddings > 10 Billion 1-2 > 10K

-----------------------------------------------------------------------------------------------------------

i Mikhail Smelyanskiy, Al at Facebook Datacenter Scale, Invited Lecture in UC Berkeley EE 290, 2020. : 16
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Training Recommendation Systems

For model parallel training we will have need allreduce and alltoall
communication All Reduce to aggregate gradients for MLP layers

*  Optimized HW needs to have:

————— ———— —————

I ( 1 ( I (

— Fast interconnect to reduce alltoall communication E i E i E i
overhead E‘—’i i‘_’i E‘_’E

I I I

— Intelligent Caching and Prefetching i E P51 i P61
! 1 ! !

— Large Capacity High Bandwidth Memory
* We also need optimized ML algorithms to enable:

— Ultra low precision quantization and fast
Structured/Unstructured pruning to speed up inference

— Robust optimization algorithms that are require less
tuning and have lower overhead

- Gholami, Amir, et al. "Integrated model, batch, and domain parallelism in training neural networks." SPAA’18.

- Yao, Zhewei, et al. "HAWQV3: Dyadic Neural Network Quantization." arXiv preprint arXiv:2011.10680.

- Z. Dong*, Z. Yao*, A. Gholami*, M. Mahoney, K. Keutzer, HAWQ: Hessian Aware Quantization of Neural Networks With Mixed Precision, ICCV’19.

-Z.Dong, Z. Yao, Y. Cai, D. Arfeen, A. Gholami, M. Mahoney, K. Keutzer HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks, NeurlPS’20.
- Shen, Sheng, et al. "Q-bert: Hessian based ultra low precision quantization of BERT." AAAI'20.

- Kim, Sehoon, et al. "I-BERT: Integer-only BERT Quantization." arXiv preprint arXiv:2101.01321 (2021).

- Naumov, Maxim, et al. "Deep learning training in facebook data centers: Design of scale-up and scale-out systems." arXiv preprint arXiv:2003.09518 (2020).

- Krishna S, Krishna R. Accelerating Recommender Systems via Hardware" scale-in". arXiv:2009.05230, 2020.
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Executive Summary:
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New Opportunities for DSA

» Emerging Al applications with low arithmetic intensity
— Recommendation Systems, that need DSA with
« Large Memory Systems
 Fast Interconnect
 Prefetching/Caching Hierarchy
> Al at the Edge:
— All Al domains (CV, NLP, RecSys, ASR, Robotics/RL, etc.)
» Low-precision Inference
 Unified software interface for programmability
* HW/NN Co-design
» Emerging Al Optimization Algorithms:
— Moving beyond SGD based training to second-order methods
— Need for HW that supports fast Randomized algorithms
— Important applications for Scientific ML/Computing

18
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Moving from the Cloud to the Edge!

/_\ 6}\9
CLOUD | Data Centers

Thousands

On-device é@
intelligence “pmigg
, FOG | Nodes
S paramount Low latency
Process data closest to the f& E” /
source, complement the cloud . etwor k b d idth
L _J

EDGE | Devices 8 <\

* We observed a big migration to cloud in the past decade.
* We are observing a significant migration back to the device driven by privacy

concerns, and need for real-time Al

e , 19
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Al at the Edge

* Inference at the server is unreliable and challenging for latency/energy constrained applications
— Example: Autonomous cars produce O(10) Gbps data and need latency <100ms under <100 Watts
+ User privacy can be comprised when data is sent to the cloud

— Example: More than 25% of smart speaker users do not want their data to be sent to the cloud [1]

Thousands

CLOUD | Data Centers

Millions 1-10 Gbps
to the fog/cloud

FOG | Nodes

____________________________________________________

1 [1] Malkin N, Deatrick J, Tong A, Wijesekera P, : EDGE | Devices
i Egelman S, Wagner D. Privacy attitudes of :

1 smart speaker users. Proceedings on Privacy
 Enhancing Technologies. 2019.

I 100+ Gbps at
' the Edge

20



We Want to Operate Across a Broad Range of Hosts at

the Edge with Limited Resources

15 inch Macbook Pro |
76Wh = 273.6kJ
Apple: 10h = 7.6 W

O > w13 inch Macbook Air | 54Wh = 194.4kJ
) WA ppple:12h=45W
<N
0\9 e Eee PC 1000HE | 49Wh = 176kJ
< e Asus: 9.5h =52 W
&@ e
,/
QO i iPad Pro | 41Wh = 147kJ
(bq@ Apple: 10h use = average 4.1W
N
?:\6 e Kindle Oasis | 0.91Wh = 3.276kJ

Ebook Friendly: “15days @ 30m/day” = 7.5h @ 0.12 W average

2017 iPhone8 | 6.96Wh = 25kJ Typical handset

Talk time: 14h = 0.5 W 32g, 13cc, 5.5Wh = 19.8 kJ
Video: 13h = 0.54 W Typical usage

5kJ active + 12kJ standby = 1 battery
iwatch Series 3 1.07Wh | 3.8kJ charge

60mW, 18 hours Per Ljung — Nokia, 2012

0OZ0 Digital Pedometer

80uW, 0.72Wh | 1 year 1 Wh = 3.6 kJ Slide: Courtesy of Prof. Keutzer 21
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We cannot naively use general DNN models
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EdgeAl/TinyML: An Emerging Paradigm for Efficient Al

Deployment

Challenges on the Machine Learning side:

We need systematic methods for efficient deployment

— Existing quantization and pruning often involve ad-hoc and
do not work on new tasks.

We need efficient on-device training, for personalization lnfglzf"t
. . . . (od
or online learning scenarios. However, current training Large-scalg

data cent
- Eq ers

methods are not suitable for on-device training 98 Devigeg
— Brute force hyperparameter tuning
— Prohibitive memory footprint

We need to rethink and co-design
the NN architecture for efficient
edge deployment



Summary: Three Elements of Efficiency
at the Edge

We need to co-design Edge HW with
the NN applications

A big opportunity is to take advantage of
low precision

Neural Architectures
o elesslle

B = 3 | i P I
it | i
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Restricted Energy and Compute at the Edge:

Use Low Precision

* Memory accesses are the principal cost in both latency and energy
* Lower precision weights in DNN mean each memory access brings more data values
* More data values few accesses overall

Operation: Energy | Relative Energy Cost
(pJ)

8b Add 0.03

16b Add 0.05

32b Add 0.1

16b FP Add 0.4

32b FP Add 0.9
8b Multiply 0.2

i W 32b Multiply 3.1

Stratix 10 NX 16b FP Multiply 1.1
32b FP Multiply 3.7
32b SRAM Read (8KB) 5
32b DRAM Read 640

 Image Credit: Sdxcentral, nvidia | [Horowitz, ISSCC 2014] 1 10 102 103 10¢

. 25
1 Table credit: Mark Horowitz
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Quantization:

Workhorse for Efficient Inference

« Uniform quantization is a linear mapping from floating point values to quantized
integer values

Floating Point Values

A ) 1.12 2.7 -0.9

e O -0 o FP32 INT8
(pre-quantized) (quantized)

0 1 vt 254 255

8-bit Quantized Values

26



Lower precision Multiply-Acc Reduces Energy

* Lower precision weights mean less energy per Multiply-Accumulate

* Also enables putting more MAC units per unit of silicon

PASCAL TURING TENSOR CORE TURING TENSOR CORE TURING TENSOR CORE
FP16 INT 8 INT 4
e o,

=z
s
.
"
.
.
.
.
.
-
w
B e

ANNVRVRRLRLROOOSON NN NN 4

UUTUTRRRRII ISR

Bits in integer TOPS /Watt ~45nm

MAC

16 0.5 TOPS/Watt
8 1 (2x)

5 (10x)
2 10 (20x)

Big opportunity to enable lower bit precision inference!

Data from Marian Verhelst, KU Leuven
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Mixed Precision INT4/8 Quantization Works!

Sensitivity: Flat vs. Sharp Local Minima
Inference Latency

ey
Balance the
Iy —
Trade-off
0 2 4

mINT8 mINT4

128 128

N N ’ ,
S e &\'»
A 512 512
W conv16/17 _
128 128
conv8/9
FC&softmax

conv6/7
co%vé4/3 conv4/5
4-bit 4-bit 4-bit 4-bit
8-bit 8-bit 8-bit 8-bit

i Yao, Zhewei, et al. "HAWQV3: Dyadic Neural Network Quantization." arXiv preprint arXiv:2011.10680. i
1 Z. Dong*, Z. Yao*, A. Gholami*, M. Mahoney, K. Keutzer, HAWQ: Hessian Aware Quantization of Neural Networks With Mixed Precision, ICCV’19. i
i Z.Dong, Z. Yao, Y. Cai, D. Arfeen, A. Gholami, M. Mahoney, K. Keutzer HAWQ-V2: Hessian Aware trace-Weighted Quantization of Neural Networks, NeurlPS’20. 1
i Shen, Sheng, et al. "Q-bert: Hessian based ultra low precision quantization of BERT." AAAI'20. :
i Kim, Sehoon, et al. "I-BERT: Integer-only BERT Quantization." arXiv preprint arXiv:2101.01321 (2021). i
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Integer-only Quantization

 Itis possible to perform integer-only quantization algorithm with only INT

multiplication, addition, and bit shifting

INT4 Weights INT4 INT32 INT32 -> INT4
Multiplication Accumulation Dyadic Scaling

—Q—0—[3
—
INT4 Activations

 No accuracy degradation for INT8 (5% higher than prior art)
* Direct hardware implementation and verification

— Up to 1.5x speed up compared to INT8 quantization
i Yao, Zhewei, et al. "HAWQV3: Dyadic Neural Network Quantization." arXiv preprint arXiv:2011.10680. E 29
1 Kim, Sehoon, et al. "I-BERT: Integer-only BERT Quantization." arXiv preprint arXiv:2101.01321 (2021). E
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Lower Precision Can Improve Edge HW

Smartphone, AR/VR Edge Automotive
Peak Al TOPS goggles Accelerator 10W-36W
(INT8) 3W-10W SW-15W
100
TOPS Smart Watch, Micro Smart Speakers & Cameras
Drone 0.1W-3W s %@ $ °% |RuEE
10pW-200mW S0 owem b
10 o
TOPS
Apple A14 . .
Qualcomm XR2 Mythic M1.108 MobileEye Q5

1 SnapDragon 888 FIe:Loglx Tesla FSD
TOPS InferX1

Synaptics AS-371

Kneron KL720

NXP i.MX8M+ . .
100 Rapid Improvements in
GOPS Edge Processors is

Going to Help

10
GOPS Qualcomm Wear 4100+

Lattice CrossLink-NX-40

FPGA

Slide: Courtesy of Prof. Keutzer GreenWaves GAP9 30
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EdgeAl: Challenging to Deploy

« An important challenge at the edge, is the
wide variety of the HW, and the lack of

good software that could help accelerate

Smartphone, AR/VR Edge Automotive
Peak Al TOPS goggles Accelerator 10W-36W
(INT8) 3W-10W SW-15W

deployment

TOPS

Smart Watch, Micro Smart Speakers & Cameras
D 0.1W-3W

— Existing solutions such as TVM are still =, |— ‘=

Apple A14

Qualcomm XR2 Mythic M1‘108 MobileEye Q5
NOt TuUlly aevelope ) acttmmin M e
TOPS InferX1

Synaptics AS-371
Kneron KL720

— Great opportunity for Intel to provide a =, BE @ Rapid Improvementsin

Edge Processors is
Going to Help

standard family of edge HW along with =,

Qualcomm Wear 4100+
Lattice CrossLink-NX-40
FPGA

integrated software

31
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Executive Summary:

New Opportunities for DSA

» Emerging Al applications with low arithmetic intensity
— Recommendation Systems, that need DSA with
« Large Memory Systems
 Fast Interconnect
 Prefetching/Caching Hierarchy
» Al at the Edge:
— All Al domains (CV, NLP, RecSys, ASR, Robotics/RL, etc.)
» Low-precision Inference
 Unified software interface for programmability
« HW/NN Co-design
» Emerging Al Optimization Algorithms:
— Moving beyond SGD based training to second-order methods
— Need for HW that supports fast Randomized algorithms
— Important applications for Scientific ML/Computing -



Background:
Stochastic Gradient Descent (SGD)

Copyright: Amir Gholami

In every iteration of SGD we load a random mini-batch of
training data, and compute the gradient.

2.00 4
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0.00
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025 500
-0.25_4 5o

Image Source
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https://arxiv.org/pdf/1609.04747.pdf

Background:

Stochastic Gradient Descent (SGD)

In every iteration of SGD we load a random mini-batch of
training data, and compute the gradient.

Mini-batch

Image Source

34


https://www.section.io/engineering-education/sgd-classifier/
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Rapid Training of NNs

YK > LossE dE/dY, I—)— Loss E
k
|
dE/dY\.1=dE/dY, *W
Y= WY /dYia=dE/dYi "W —dE/dW P Wi= Wi -A*dE/dWi —WiP]  Yie WitV
dE/de=d E/dYk *Yk.1
= : 5
1 1
Y2 dE/dYk1 Y2
| | |
l A 4 ]
= *
Y2= WZ*Yl dE/dY1 dE/de W2 L d E/sz'» W2= W2 -A*d E/sz _WZ_) Y2= WZ*Yl
dE/dW2=d E/de *Yq
* | *
1 dE/dY, Y,
I v I
— *
Yim Wi*X dE/AX=dE/dYa ™ Wi L ey Wi Wy AdE/dWo— W] Ve Witx
T |X
FORWARD PASS BACKPROP WEIGHT UPDATE | [FORWARD PASS

___________________________________
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ImageNet Scaling!

Main benchmark for hardware performance in ML
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Great Progress on Scaling ResNet50 on ImageNet

Training ResNet50 on ImageNet requires
720 hours on a SINGLE Maxwell Titan X

10000
1000
)
S
=
o 100
=
£
E * <1 minute
o0 + >50,000x speedup
g Tencenit
0.1 SONY
0.03
N Bl
128 200 128 256 768 128 2048 2048 2176 2048

# of Nodes
Despite the great progress the solutions do not work on problems
other than ResNet50 on ImageNet

37



ResNet50 on ImageNet is too Simple!

* The loss landscape of ResNet50 is too simple, and not representative of new workloads

38



https://www.section.io/engineering-education/sgd-classifier/
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Emerging Solutions:

Going Beyond Simple SGD

"
: 1(©(© © ©
: 1©
1 1
’ °
- +{(©
L 00O OOo 0ol 400000000

Loss Function First-Order Methods Second-Order Methods

(SGD) (AdaHessian)

P P P ' 39
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Emerging Solutions:

Going Beyond Simple SGD

« New second-order algorithms are Loss Landscape

emerging for training NNs

How would this impact HW design?
* Need fast Randomized Linear Algebra LayerN-1 ||
— Randomized Matrix-Matrix Operations |
— RBLAS S

_______________________________________________________________________________________________________________________________________________________________________________

Z Yao, A Gholami, S Shen, M Mustafa, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning, AAAI'21. E
Z. Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018. !
Z. Yao*, A. Gholami*, K. Keutzer, M. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine 1
Learning, 2020. i
Code: https://github.com/amirgholami/PyHessian !
Code: https://github.com/amirgholami/AdaHessian !
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DSA with Fast Randomized Matrix Operations

* The core of these algorithms is multiplying a matrix with a random matrix
— Accelerating Randomized operations can have a huge impact

/» inner product approach

for i = 1:1I
for j = 1:7J
for k = 1:K
C(i,j) = C(i,j) + A(d,k)*B(k,j);
C(L,)) C(i)) A(,:) [ 2

¥ ¥
- O , [ | P P||||$
Second-Order Random Matrix PH}H} ’LQJ

Operator
t A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, K. Keutzer, SqueezeNext: Hardware-Aware Neural Network Design, i . .
| ECV Workshop at CVPR'18,2018. i Fast RNG can significantly
i K. Kwon, A. Amid, A. Gholami, B. Wu, K. Keutzer, Co-Design of Deep Neural Nets and Neural Net Accelerators for Embedded i :
i Vision Applications, Design Automation Conference (DAC'18), 2018. i Improve pe rformance

' Matrix Image Source: https://patterns eecs.berkeley.edu/?page id=158 : 41
i NSF Ballistic Project (UCB, UoT, ORNL, UOM, CU) i
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Summary:

New Opportunities for DSA

» Emerging Al applications with low arithmetic intensity
— Recommendation Systems, that need DSA with
« Large Memory Systems
 Fast Interconnect
« Efficient Prefetching and Cache Hierarchy
> Al at the Edge:
— All Al domains (CV, NLP, RecSys, ASR, Robotics/RL, etc.)
» Low-precision Inference

 Unified software interface for better programmability
» Emerging Al Optimization Algorithms:
— Moving beyond SGD based training to second-order methods
— Need for DSA that supports fast Randomized algorithms
— Important applications for Scientific ML/Computing 42
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Thanks for Listening

For any feedback/questions please contact
amirgh@berkeley.edu
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