
Accelerating Long Context Length 
LLM Inference

Coleman Hooper 1*, Sehoon Kim1*, Hiva Mohammadzadeh1, Monishwaran Maheswaran1, Aditya Tomar, Haocheng Xi, Rishabh Tiwari,

June Paik2, Sophia Shao1, Michael W. Mahoney1, Kurt Keutzer1, Amir Gholami1

1 University of California Berkeley

2 FuriosaAI



Agenda

v Inference bottleneck analysis for Transformers

v Squeezed Attention: Algorithm

vSelective Attention

vHierarchical Attention

v Results

v Kernel Implementation and Benchmarking

v Conclusion

2



Multi-Regime Analysis



Arithmetic Intensity

Arithmetic Intensity: number of floating point operations (FLOPs) that can be performed per 
byte loaded from memory, or memory operations (MOPs)

4



Arithmetic Intensity

Arithmetic Intensity: number of floating point operations (FLOPs) that can be performed per 
byte loaded from memory, or memory operations (MOPs)

5

● Limited by hardware’s peak memory bandwidth 
(GB/s)

● Benefit from techniques that optimize memory 
load-store operations (e.g., quantization)

● Limited by hardware’s peak FLOP/s (FLOPs per 
second)

● Benefit from algorithmic improvements that 
reduce computational complexity (e.g., 
subquadratic attention)

Compute BoundMemory Bound



Fine-Grained Analysis

Categorize all Transformer operations for a finer-grained analysis

6

Linear
Wq, Wk, Wv, Wo, FFN

Attention
QKT & attn_weights * V

Aggregate
Linear + Attention + 

LayerNorm, Softmax, 
Activation

1. Asymptotic analysis of arithmetic intensity for linear, attention, and aggregate operations

2. Visualize analysis using analytical roofline model for a practical inference setting



Asymptotic Analysis of Arithmetic Intensity for 
Prefill and Decoding

7Tiwari R*, Xi H*, Tomar A*, Hooper C, Kim S, Horton M, Najibi M, Mahoney MW, Keutzer K, Gholami A., QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache. arXiv:2502.10424.



8

Prefill Arithmetic Intensity Decode Arithmetic Intensity

Asymptotic Analysis of Arithmetic Intensity for 
Prefill and Decoding



9

Prefill Arithmetic Intensity Decode Arithmetic Intensity

Compute Bound Memory Bound

Asymptotic Analysis of Arithmetic Intensity for 
Prefill and Decoding



10

Prefill Arithmetic Intensity Decode Arithmetic Intensity

Asymptotic Analysis of Arithmetic Intensity for 
Prefill and Decoding

Observations:
● AI of prefill scales with SL but not decoding
● Larger batch size only helps with short SL
● Batching does not help when dealing with long SL 

In decoding every sequence in the batch undergoes self-attention separately and 
therefore cannot benefit from batching in the same way linear layers do.



Analytical Roofline Model

Ridge point:

Memory-Bound < Ridge point       < Compute-Bound

Ridge point (A100)   = 161
Ridge point (A6000) = 403
Ridge point (H100) = 485



Ridge Point Scaling Trend

12

Memory-Bound < Ridge point       < Compute-Bound



Prefill (Llama-2-7B, NVIDIA A6000)

13

During prefill, all regimes lie above the ridge plane and thus are compute-bound.

Tiwari R*, Xi H*, Tomar A*, Hooper C, Kim S, Horton M, Najibi M, Mahoney MW, Keutzer K, Gholami A. QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache. arXiv:2502.10424.



Prefill (Llama-2-7B, NVIDIA A6000)

14

During prefill, all regimes lie above the ridge plane and thus are compute-bound.

Tiwari R*, Xi H*, Tomar A*, Hooper C, Kim S, Horton M, Najibi M, Mahoney MW, Keutzer K, Gholami A. QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache. arXiv:2502.10424.



Decode (Llama-2-7B, NVIDIA A6000)

15

Observations:
● Small batch + short context regime

○ Memory ops for the linear projections dominate
● All other regimes including long context: 

○ Attention dominates due to the expensive load-store operations for the large KV cache



Decode (Llama-2-7B, NVIDIA A6000)

16

Observations:
● Small batch + short context regime

○ Memory ops for the linear projections dominate
● All other regimes including long context: 

○ Attention dominates due to the expensive load-store operations for the large KV cache

=> Need to find a way to reduce KV Cache size



Agenda

v Inference bottleneck analysis for Transformers

v Squeezed Attention: Algorithm

vSelective Attention

vHierarchical Attention

v Results

v Kernel Implementation and Benchmarking

v Conclusion

18



Fixed-Context LLM Applications

19

• In emerging LLM applications, many input prompts are concatenated with long fixed context 

(a portion of the input prompt fixed across user queries)

– Contains system instructions (e.g. “don’t output anything unsafe”)

– Contains documents or documentation

– May also contain few-shot in-context examples for the target task

Fixed Prompt

Instructions Documents ICL Examples

“Don’t output 
anything 

unsafe, be 
concise, …” 

Arxiv Papers,
Code 

Documentation,
etc.

+ +
“Write a program 
that does A” -> A
“Write a program 
that does B” -> B

Key Centroids

Fixed Prompt Keys

1 2 3 4 6 8 90 5 7

K-Means Clustering

5 7 1 3 9 4 80 6 2

Reordered Keys

User Input Query

“Write a 
program that 

does X”

Only Available OnlineAvailable Offline

Simple Approach: 
One-Level Centroids 

Hierarchical Key Centroids

Improved Approach: 
Hierarchical Centroids

Fixed Context



Idea: Accelerating Attention to the Fixed Context

20

• Performing the computation for attention to the fixed context is expensive, and it 
limits what information you can include to personalize your LLM 

• However, the fixed context tokens are fixed for successive user queries

💡Idea: Can we preprocess the fixed context offline to reduce its overhead 
during inference?

💡The overhead here is loading KV Cache

💡 If  we could quickly find important KV Cache values and only load them, that 
would result in both efficient and accurate inference

Challenge here is that important KV Cache depends on the user query



Approach: Query-Aware Sparse Attention

21

• What keys are important depends on the query

• If we could preprocess the KV Cache so we can 

quickly filter out and zoom in to the important 

values we can only load them

Level 2 Clusters

Level 1 Clusters

Keys

Query Key



Fixed Context Keys

22

• Fixed Context keys shown below (as well as a visualization of the directions 

that they point in embedding space)

Shared Prefix Keys

0 1 2 3 4 5 6 7 2
4

1
3
6

0

5 7

Fixed Context Keys



Cluster Keys Offline

23

• Use clustering based on cosine similarity to group together keys which point in a similar 

direction

– Idea is that keys which point in the same direction will have correlated dot 

products with query vectors

Shared Prefix Keys

2
4

1
3
6

0

5 7

0 1 2 3 4 5 6 7

Fixed Context Keys



Cluster Keys Offline

24Shared Prefix Keys

2
4

1
3
6

0

5 7

0 1 2 3 4 5 6 7

Key Centroids
• Clustering based on 

cosine similarity to group 
together keys

• Compute a centroid for 
each cluster

– We can compare with 
the centroid to tell us if 
the keys in that cluster 
will have high 
attention scores

Fixed Context Keys



Comparing with Centroids

25

• First, compare the input query tokens with each of the key centroids

Key Centroids
0.4

0.010.05
> 0.2 ?

Fixed Prompt Keys

Load Only
Important Keys

0 5 7
Input 
Query
Tokens

Input 
Query
Tokens

1) Compare with Key Centroids 2) Compute Attention with Important Keys

5 7 1 3 9 4 80 6 2



Only Loading Important Keys

26

• First, compare the input query tokens with each of the key centroids

• Use the centroid score to estimate the expected attention score for each token 

• Compare with threshold (after SoftMax) to decide whether to retain each key

Key Centroids
0.4

0.010.05
> 0.2 ?

Fixed Prompt Keys

Load Only
Important Keys

0 5 7
Input 
Query
Tokens

Input 
Query
Tokens

1) Compare with Key Centroids 2) Compute Attention with Important Keys

5 7 1 3 9 4 80 6 2

Fixed Context Keys



Agenda

v Inference bottleneck analysis for Transformers

v Squeezed Attention: Algorithm

vSelective Attention

vHierarchical Attention

v Results

v Kernel Implementation and Benchmarking

v Conclusion

27



Extending to Hierarchical Centroid Lookup

29

• Hierarchical lookup can improve 
the resolution of the clusters, 
while still being efficient by 
only comparing with a subset 
of the later clusters

• If we use 𝒄′ clusters at each 
level and retrieve a subset of 
these clusters at each step, we 
need 𝑶(𝐥𝐨𝐠(𝑵)) hierarchical 
levels to reduce the keys to the 
desired count 𝒌

• The complexity becomes 
𝑶(𝐜!𝐥𝐨𝐠(𝑵) + 𝒌)

Approach Complexity 

Standard Attention 𝑂(𝑁)

SqueezedAttention (1-Level) 𝑂(𝑐 + 𝑘)
SqueezedAttention (Hierarchical) 𝑶(𝐜!𝐥𝐨𝐠(𝑵) + 𝒌)

Complexity Analysis for SqueezedAttention

Therefore, the memory and compute complexity for each 
generation iteration becomes $O(c' \log N + k)$, reducing the 
complexity from \textit{linear to logarithmic} with respect to 

Level 2 Clusters

Level 1 Clusters

Keys

Query Key



Full Method (Offline)

30

1 20 3 4 5 97 8 10 11 12 136

C!(#) C%(#)C&(#)C#(#)C'(#)

0
3

8
11

2

10

12
1

7

5
134

6
9

C!(') C#(')C'(')

C!(#) C%(#)

C&(#) C#(#)

C'(#)

C!(%)

C#(%)
C%(%)

Keys

Level 2 Centroids

Level 1 Centroids

Clustering 
Based on 
Semantic
Similarity

K-means Clustering

1-Level Clustering

Hierarchical Clustering



Full Method (Online)

31

C!
(#) C%(#)C#(#)Level 1 Centroids

C!(#)

C%(#)
C#(#)

0
3

8
11

2

10

12
1

7

5
134

6
9

C!(%) C&
(%)C'

(%)C%
(%)C#

(%)Level 2 Centroids

C!(%) C#(%)

C&(%) C%(%)

C'(%)

1 20 3 4 5 97 8 10 11 12 136Keys

Retrieval 
Based on 
Semantic
Similarity

Query

Query

Query

Compute Attention only with Important Keys

1-Level Retrieval
Hierarchical Retrieval



Agenda

v Inference bottleneck analysis for Transformers

v Squeezed Attention: Algorithm

vSelective Attention

vHierarchical Attention

v Results

v Kernel Implementation and Benchmarking

v Conclusion

34



LongBench Results

35

• Accuracy result shown for different LongBench tasks (LLaMA-2-7B-32K model) 

– QUEST is shown as baseline (groups tokens sequentially and then performs approximate 

sparse attention)

– We attain higher accuracy than the baselines with significantly lower KV cache budget, 

and our hierarchical method also maintains comparable accuracy

LongBench accuracy for different % of tokens pruned, using 5% centroids (one centroid per 20 tokens on average)



Kernel Implementation

40

• We design custom Triton kernels for the centroid lookup and sparse FlashAttention
computations, and benchmark these against the FlashAttention kernel
– We benchmark these on H100 NVL platform, using 512K Fixed Context length
– Results show (normalized) speedups relative to FlashAttention using our method

1.9X 2.6X
4.2X

1.8X 2.6X
4.3X 4.2X

2.1X
3.0X



Summary

• Asymptotic Analysis for Transformer Inference

• Fast attention to the fixed context in the input prompt

• Hierarchical method also reduces the overhead of the 

centroid comparison

• Significant speedups (4.3x/4.2x for prefill/generation) 

with minimal accuracy degradation

42

Level 2 Clusters

Level 1 Clusters

Keys

Query Key



43

Thank you!
• QuantSpec paper: https://arxiv.org/pdf/2502.10424
• Squeezed Attention Paper: https://arxiv.org/pdf/2411.09688
• Squeezed Attention Code: https://github.com/SqueezeAILab/SqueezedAttention

https://arxiv.org/pdf/2502.10424
https://arxiv.org/pdf/2411.09688
https://github.com/SqueezeAILab/SqueezedAttention

