Accelerating Long Context Length
LLM Inference

Coleman Hooper *, Sehoon Kim'*, Hiva Mohammadzadeh?, Monishwaran Maheswaran?, Aditya Tomar, Haocheng Xi, Rishabh Tiwari,

June Paik?, Sophia Shaol, Michael W. Mahoney?, Kurt Keutzer!, Amir Gholami?

L University of California Berkeley

2 FuriosaAl

* Inference bottleneck analysis for Transformers

% Squeezed Attention: Algorithm
“* Selective Attention
s Hierarchical Attention
“ Results
*» Kernel Implementation and Benchmarking

+» Conclusion

Multi-Regime Analysis

[Inference]
[Prefill] [Generation]

[Small Batch] [Large Batch] [Small Batch] [Large Batch]

Short Long Short Long Short Long Short Long
Context Context Context Context Context Context Context Context

Arithmetic Intensity

Arithmetic Intensity: number of floating point operations (FLOPs) that can be performed per
byte loaded from memory, or memory operations (MOPs)
FLOPs

Arithmetic Intensity = ¥ MOPs.

Arithmetic Intensity

Arithmetic Intensity: number of floating point operations (FLOPs) that can be performed per
byte loaded from memory, or memory operations (MOPs)

. : . # FLOPs
Arithmetic Intensity = ———————
MOPs
Memory Bound Compute Bound
e Limited by hardware’s peak memory bandwidth e Limited by hardware’s peak FLOP/s (FLOPs per
(GB/s) second)
e Benefit from techniques that optimize memory e Benefit from algorithmic improvements that
load-store operations (e.g., quantization) reduce computational complexity (e.g.,
subquadratic attention)
5

Fine-Grained Analysis

Categorize all Transformer operations for a finer-grained analysis

-

_

Linear
Wq, Wk, Wv, Wo, FFN

~

J

-

[

Attention
QKT & attn_weights * V

~

J

-~

_

Aggregate
Linear + Attention +
LayerNorm, Softmax,
Activation

J

1. Asymptotic analysis of arithmetic intensity for linear, attention, and aggregate operations

2. Visualize analysis using analytical roofline model for a practical inference setting

Asymptotic Analysis of Arithmetic Intensity for

Prefill and Decoding

Table 1. Asymptotic analysis of arithmetic intensity for linear, attention, and aggregate operations under prefill and decoding for batch
size B, sequence length Sr,, hidden dimension d, and generation length of & tokens.

Prefill
| Linear | Attention | Aggregate
FLOPs | O(B- S - d?) | O(B-SL?-d) | O(B-SL-d?) + O(B-S.*-d)
MOPs O(B-SL-d) + O(dz) OB-SL)+ O(B-SL-d) O(B-SL-d)+ O(dz)
———— ~—— \ s v ~ g 2
activations weights flash-attn scores activations {Q,Ck ,Cyv }
-
Arithmetic Intensity | =~ O(B-51), Sp<d ~ JOWr), Sp<d ~ JOB-51), Sp<d
O(d), S >d O(SL), S >d O(SL), S >d
Decode
| Linear | Attention | Aggregate
FLOPs] O(k-B-dz) | O(k-B-SL-d) \ O(k-B-d2)+O(k-B-SL-d)
MOPs O(k-B-d) + O(k-d*) | OKk-B-S.)+ O(k-B-S-d) | O(k-d?)+O(k-B-Sg-d)
activations weights attention scores activations {Ck ,C'v }
Arithmetic Intensity ~ O(B), SL<d ~ o), Sp<d . O(B), Sp<d
O(B), Sp>d O), Sr>d L o), Sp>d

Asymptotic Analysis of Arithmetic Intensity for

Prefill and Decoding

Prefill Arithmetic Intensity Decode Arithmetic Intensity

O(BSL), S; < d > O(B), S, < d
O(SL), St >d O(1), Sr>d

-~

prefill decode

| - A -

Asymptotic Analysis of Arithmetic Intensity for

Prefill and Decoding

Prefill Arithmetic Intensity Decode Arithmetic Intensity

OB-SL), Sp<d > O(B), Sp<d
O(SL), Sr,>d O(), Sp>d

-~

prefill decode

[Compute Bound J { Memory Bound J
9

\ - | -

Asymptotic Analysis of Arithmetic Intensity for

Prefill and Decoding

Prefill Arithmetic Intensity Decode Arithmetic Intensity

O(BSL), S; < d > O(B), S, < d
O(SL), St >d O(1), Sr>d

-~

prefill decode

| - A -

Observations:
« Al of prefill scales with SL but not decoding
o Larger batch size only helps with short SL
« Batching does not help when dealing with long SL

In decoding every sequence in the batch undergoes self-attention separately and

therefore cannot benefit from batching in the same way linear layers do.
10

Analytical Roofline Model

peak compute performance (FLOP/s)
peak memory-BW (GB/s)

Ridge point:

Memory-Bound < Ridge point < Compute-Bound

Ridge point (A100) =161
Ridge point (A6000) = 403
Ridge point (H100) =485

Ridge Point Scaling Trend

Memory-Bound < Ridgepoint < Compute-Bound

Ridge Factor Scaling

1000 8200 —1000
. . H100 -
= . B
[as] B |
E\ . |
@]
€ : B
(0]
=
% 100 —100
(O]] B
o i |
"] i
o
9 i K40 i
o | Titan X -
o
§ GTX 580 ¢
& 104 —10
C] () s
o 7 B
JOJ T -
L : i
g] G80 -
i) i B
o
1+ —1
T I T I T I T I T I T I T ' T ' L I T ' T ' T I\ T I\ T I\ T I\ T I\ T I\ T I\ T I\ T I\ T I\ T
2004 2007 2010 2013 2016 2019 2022 2025

Year 12

Prefill (Llama-2-7B, NVIDIA A6000)

Linear Attention Aggregate -

>
v
[
1
2
©
o |
> 2 2 8000 b
o=m v w
z g g £
g] 3 6000 5
c = £ R
£ v [¢] 8
. bl S 4000 @
] [T} [T} g
£ 1S £ S
£ < £ 2000 S
= = T £
< < < <
L
Con X 16k
ONteyy " 33k 2
n tLen 56K 131k 1
9th 262k 9th 262k Llo

Memory Bound

During prefill, all regimes lie above the ridge plane and thus are compute-bound.

C Tiwari R* Xi H* Tomar A* Hooper C. Kim S. Horton M. Naiibi M. Mahoney MW. Keutzer K. Gholami A. QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache. arxiv-2502 10424 | 13

Prefill (Llama-2-7B, NVIDIA A6000)

Ridge Factor Scaling

Aggregate
10007: B200 ;1000 100
R h H100 F
; 4 I
2] [
E\ i
o
5 =
= 2
% 100 =100 g
g I ©
[u » -l
£ F 2 oo 3
2 - g
Q 1 K40 ® 3 3 6000 5
s i Titan X I £ B
X . L_J %]
s GTX 580 B P c
£ 10 =10 £ S
5] o I £ 2000 S
g] i < <
z R 3 8k
Conte)(tlzk 3k 2
a - e
1] r 1 ngth 131k262k 1 .
—_—T T T T T e
2004 2007 2010 2013 2016 2019 2022 2025

Year

During prefill, all regimes lie above the ridge plane and thus are compute-bound.

E Tiwari R*, Xi H*, Tomar A*, Hooper C, Kim S, Horton M, Najibi M, Mahoney MW, Keutzer K, Gholami A. QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache. arXiv:2502.10424. i 14

Decode (Llama-2-7B, NVIDIA A6000)

Linear Attention Aggregate
1
Compute Bon,dw' L T) 1 N

1id ~ Ridge Plane ghgin Ny

Ut Tk egielsm =
S, 400) ‘J 4 S, 400 y 2l [-~
2 350 350 1 : a
S § 300 é
£ £ 250 £
I o 200 v
< @ 150 2
E E 100 E
€ 128" £ 50 15" E
< - < <

16 o',<\’
v
8 8 8k
Co, 16k 2 Co, 16k 2 Co,
Nlext Le33k 66k . Q Ntext Le33k ook . . A e, t Ly 66Kk 0,
ngth 362 Ngth 136 ngth 136

Observations:

e Small batch + short context regime

o Memory ops for the linear projections dominate

e All other regimes including long context:

o Attention dominates due to the expensive load-store operations for the large KV cache

100

80

60

r20

Attention as % of Total Latency

BAIR

NTELLIGENCE RESEARCH

15

Decode (Llama-2-7B, NVIDIA A6000) BAIR

NTELLIGENCE RESEARCH

Linear Attention Aggregate

100
“\ il l -

Compute Bon,dL) ‘., L = i0
~ _ Ridge Plang A E >
A i) 1S B PP W,. ‘ {10 g
l,,{ AN T~ WA MM A | 5
2P ",J T~ P L A T~ 3
S, 400 Y1 > 0 A | > 2
G 350 & 350 '] 60 2
c c 300 c =
@ 5} o S

£ - —

£ E 250 E 2
Y Y 200 o P
@ @ 150 K] [40 o
E E 100 E S
256 256 €
= 128 £ %0 128 £ g
= 32 < < <

N r20

16 &Y
v
8 8 8k
Contethz';ssk dok 2 P Co"textlzl;ﬂk 66k 2 <° Contg tLap 66k 2 &
1 1
Ngth B 1 Ngth B3oeax Ngth 36k Llo

Observations:
e Small batch + short context regime
o Memory ops for the linear projections dominate
e All other regimes including long context:
o Attention dominates due to the expensive load-store operations for the large KV cache

=> Need to find a way to reduce KV Cache size 16

* Inference bottleneck analysis for Transformers

“ Squeezed Attention: Algorithm
“* Selective Attention
s Hierarchical Attention
“ Results
*» Kernel Implementation and Benchmarking

+» Conclusion

18

Fixed-Context LLM Applications

* In emerging LLM applications, many input prompts are concatenated with long fixed context

(a portion of the input prompt fixed across user queries)
— Contains system instructions (e.g. “don’t output anything unsafe”)
— Contains documents or documentation

— May also contain few-shot in-context examples for the target task

Fixed Context Available Offline

I |
I |
| l |
I] \ I I
I Instructions Documents ICL Examples | I User Input Query |
I |
I “Don’t output Arxiv Papers, “Write a program | : “Write a |
I anything Code that does A” -> A |
unsafe, be + Documentation, + “"Write a program | I program E,hat l
I COI‘ICise, ..." etc. that does B" -> B I does X I
|

Idea: Accelerating Attention to the Fixed Context

« Performing the computation for attention to the fixed context is expensive, and it

limits what information you can include to personalize your LLM
 However, the fixed context tokens are fixed for successive user queries

. ldea: Can we preprocess the fixed context offline to reduce its overhead

during inference?
. The overhead here is loading KV Cache

. If we could quickly find important KV Cache values and only load them, that

would result in both efficient and accurate inference

Challenge here is that important KV Cache depends on the user query

20

Approach: Query-Aware Sparse Attention

« What keys are important depends on the query

» |f we could preprocess the KV Cache so we can
quickly filter out and zoom in to the important

values we can only load them

21

Fixed Context Keys

* Fixed Context keys shown below (as well as a visualization of the directions

that they point in embedding space)

PP

Fixed Context Keys 22

Cluster Keys Offline

» Use clustering based on cosine similarity to group together keys which point in a similar

direction

— ldea is that keys which point in the same direction will have correlated dot

products with query vectors

Fixed Context Keys 23

Cluster Keys Offline

_ Key Centroids
» Clustering based on

cosine similarity to group

together keys

« Compute a centroid for

each cluster

— We can compare with

the centroid to tell us if 5 7
the keys in that cluster 0
will have high of1f2fsfa]s|e|7|(,’

attention scores

Fixed Context Keys 24

Comparing with Centroids

» First, compare the input query tokens with each of the key centroids

Key Centroids

Input
Query
Tokens

1) Compare with Key Centroids

25

Only Loading Important Keys

» First, compare the input query tokens with each of the key centroids
» Use the centroid score to estimate the expected attention score for each token

« Compare with threshold (after SoftMax) to decide whether to retain each key

Key Centroids
0.4 Load Only

>02? 28 —————-- Important Keys
I 0.05

Input Input
Query Query
Tokens Tokens

1) Compare with Key Centroids 2) Compute Attention with Important Keys Fixed Context Keys

26

* Inference bottleneck analysis for Transformers

“ Squeezed Attention: Algorithm
“* Selective Attention
**Hierarchical Attention
“ Results
*» Kernel Implementation and Benchmarking

+» Conclusion

27

Extending to Hierarchical Centroid Lookup

» Hierarchical lookup can improve
the resolution of the clusters,
while still being efficient by
only comparing with a subset
of the later clusters

* |f we use ¢’ clusters at each
level and retrieve a subset of
these clusters at each step, we

need O(log(N)) hierarchical

levels to reduce the keys to the
desired count k

 The complexity becomes Standard Attention O(N)
O(C’log(N) + k) SqueezedAttention (1-Level) O(c+k)
SqueezedAttention (Hierarchical) O(c'log(N) + k)

Complexity Analysis for SqueezedAttention 29

Full Method (Offline)

3 .2
[J
0. ° 0i1
[J
K 10 8
eys (o | 1|2 3|4)5)|6| 7 |8 9f10]11]12]13 1 5
[]
12 o, Aiens
6 %
K-means Clustering
cPe °ci? Clustering
Based on
Level 2 Centroids | ¢ || ¢ || ¢ | ¢ | ¢ @ @ Semantic
C, °C; . .
2y Similarity
1-Level Clustering C3
Hierarchical Clustering c®
0 o
Level 1 Centroids | c{” | ¢ | ¢V cg” .
€Y
Cl

30

BAIR

Full Method (Online)

cs?
x Query
Level 1 Centroids | c{” || ¢® | ¢V P
c
Hierarchical Retrieval
1-Level Retrieval ¥ @
X X @e PG Retrieval
% Query Based on
Level 2 Centroids | ¢” [¢ || ¢ ng) @ Semantic
e Similarity
3

?

11
uer
Keys 2 5 11 13 * Q 5 y
[J
®13

Compute Attention only with Important Keys
31

* Inference bottleneck analysis for Transformers

% Squeezed Attention: Algorithm
“* Selective Attention
s Hierarchical Attention
“ Results
*» Kernel Implementation and Benchmarking

+» Conclusion

34

LongBench Results

» Accuracy result shown for different LongBench tasks (LLaMA-2-7B-32K model)

— QUEST is shown as baseline (groups tokens sequentially and then performs approximate

sparse attention)

— We attain higher accuracy than the baselines with significantly lower KV cache budget,

and our hierarchical method also maintains comparable accuracy

| Single-Document QA | Multi-Document QA | Summarization | Few-shot Learning | Code | Avg.
2
Config Budget & {24 N O & & £ Y &
> S Q| 8 N & K & 3 Y & o C | woSSum Al
& & S Y S TS ¢
All KV | 1 | 1791 11.12 33.87 | 1245 1195 6.54 | 2937 1693 21.58 | 71.50 87.96 43.87 | 6145 59.14 | 3398 34.69
Squeeze-70% | 0.325 | 18.55 11.78 34.33 | 12.31 1231 6.26 | 29.50 1690 20.76 | 69.00 87.96 43.90 | 61.29 59.53 | 33.88 34.60
QUEST 0.168 (2042 9.72 2946 | 1145 9.75 546 |27.06 1720 21.83 | 68.50 86.36 - 61.93 5938 | 32.96 -
Squeeze-90% 0.125 | 18.15 1439 3238 | 11.84 11.70 645 |[29.06 1693 21.66 | 70.00 87.43 45.15| 58.79 59.37| 33.70 34.52
H-Squeeze-90% | 0.112 | 17.41 1423 3271 | 11.99 11.38 6.68 29.14 1697 20.41 | 68.00 87.37 44.85| 5894 59.61 | 33.45 34.26

LongBench accuracy for different % of tokens pruned, using 5% centroids (one centroid per 20 tokens on average) 35

Kernel Implementation

» We design custom Triton kernels for the centroid lookup and sparse FlashAttention
computations, and benchmark these against the FlashAttention kernel

— We benchmark these on H100 NVL platform, using 512K Fixed Context length
— Results show (normalized) speedups relative to FlashAttention using our method

Average Latency (Fixed Context Sequence Length of 512K)

Normalized Latency

Baseline 70% 80% 90% Baseline 70% 80% 90% Baseline 70% 80% 90%
Pruning Pruning Pruning Pruning Pruning Pruning Pruning Pruning Pruning
Prefill (1K Input Length) Prefill (4K Input Length) Generation

[Baseline M Centroid Lookup Sparse Flash Attention 40

Summary

« Asymptotic Analysis for Transformer Inference

« Fast attention to the fixed context in the input prompt

» Hierarchical method also reduces the overhead of the
centroid comparison

« Significant speedups (4.3x/4.2x for prefill/generation)

with minimal accuracy degradation

% Query @ Key

42

Thank youl!

* QuantSpec paper: https://arxiv.org/pdf/2502.10424

* Squeezed Attention Paper: https://arxiv.org/pdf/2411.09688
* Squeezed Attention Code: https://github.com/SqueezeAlLab/SqueezedAttention

43

https://arxiv.org/pdf/2502.10424
https://arxiv.org/pdf/2411.09688
https://github.com/SqueezeAILab/SqueezedAttention

