
LLM Compiler for Parallel Function Calling

Sehoon Kim*, Suhong Moon*, Ryan Tabrizi, Nicholas Lee,
Michael Mahoney, Kurt Keutzer, Amir Gholami

University of California Berkeley

LlamaIndex Webinar, 2024

Emergent Properties of Large Language Models

2Wei et. al. “Emergent Abilities of Large Language Models”, TMLR 2022

• Emergent properties are only present in larger models, but not in small models.
• Opens up a new way of few-shot learning to solve more complex problems with in-context examples

Few-shot example

Chain-of-Thoughts Reasoning

3Wei et. al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”, NeurIPS 2022

A series of intermediate steps (i.e. chain-of-thoughts) improves LLM performance on complex reasoning tasks

Chain-of-Thoughts Reasoning

4Wei et. al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”, NeurIPS 2022

A series of intermediate steps (i.e. chain-of-thoughts) improves LLM performance on complex reasoning tasks

Are LLMs All We Need?

5

• LLMs still suffer from math, knowledge cutoff, and hallucination.
• This motivates us to equip LLMs with external tools to supplement these limitations.

LLMs are bad at math LLMs have knowledge cutoff

..?

Function-Augmented LLMs

Toolformer: A pioneering work on augmenting tools (i.e. functions) to LLMs
• Let LLM output special tokens when it needs to use external functions, when we stop the LLM

execution and run the functions ourselves, whose outputs are then appended back to the LLM

6Schick et. al. “Toolformer: Language Models Can Teach Themselves to Use Tools”, NeurIPS 2023

Function-Augmented LLMs

Toolformer: A pioneering work on augmenting tools (i.e. functions) to LLMs
• Let LLM output special tokens when it needs to use external functions, when we stop the LLM

execution and run the functions ourselves, whose outputs are then appended back to the LLM

7Schick et. al. “Toolformer: Language Models Can Teach Themselves to Use Tools”, NeurIPS 2023

ReAct: Reason and Action

ReAct: a pioneering work in enabling function calling + reasoning
• Sequential generation of Reasoning (i.e. “Thought”) and function calling(i.e. “Action”)
• Widely adapted in well-known LLM frameworks including LlamaIndex and LangChain

8Yao et. al. “ReAct: Synergizing Reasoning and Acting in Language Models”, ICLR 2023

Query: Were Scott Derrickson and Ed Wood of the same nationality?

Thought 1: I need to search Scott Derrickson.
Action 1: search(Scott Derrickson)
Observation 1: Scott Derrickson (born July 16, 1966) is an American filmmaker. He is best known for his work in the
horror genre, directing films such as The Exorcism of Emily Rose (2005), Sinister (2012) and The Black Phone
(2022)…

Thought 2: I need to search Ed Wood.
Action 2: search(Ed Wood)
Observation 2: Edward Davis Wood Jr. (October 10, 1924 – December 10, 1978) was an American filmmaker, actor,
screenwriter, and pulp novel author…

Thought 3: They are both American filmmakers.
Action 3: finish(yes)

Example Failure Case with ReAct

9

• ReAct can get into infinite loop of function calling

Query: Were John Smith and Ed Wood of the same nationality?

Thought 1: I need to search John Smith
Action 1: search(John Smith)
Observation 1: There are multiple matches for John Smith. This could refer to …

Thought 2: I need to search John Smith
Action 2: search(John Smith)
Observation 2: There are multiple matches for John Smith. This could refer to …

Thought 3: I need to search John Smith
Action 3: search(John Smith)
Observation 3: There are multiple matches for John Smith. This could refer to …

Challenges with ReAct

With these approaches it is very challenging to develop large scale intelligent software:

• Accuracy: Concatenating intermediate observations can affect the execution flow of the LLM,
potentially reducing accuracy

• Serial Execution: Not possible to run multiple tools in parallel
• Reliability: Intermediate results can affect the LLMs ability to keep track of the task
• Testability: Hard to create unit tests for specific paths of the code
• Long Term Planning: Current LLMs are not good at long term planning
• Debugging: Requires manually reading intermediate thoughts/observations and reasoning why the

LLM got the wrong results
• Fault Tolerance: Hard to recover from wrong LLM decisions (no replanning)

But recent LLMs are very good at simple function calling that involves few calls!

10

Let’s take a step back

Recent LLMs are very good at simple function calling!
💡 What if we had a way to break the problem into more bounded function calls?
• That is exactly what a good programmer does when writing large scale code:

– We break our code into smaller pieces that are easy to reason about, debug, and test
– We then write a controller logic that makes the appropriate calls to each of these smaller

pieces with the appropriate try/except and error handling

12Illustration Credit: Isaac Rodriguez

https://realpython.com/factory-method-python/

Incorporating a Systems View Helps Resolve These

13

File System
(+embedding)

Calculator
Python Interpreter

Terminal

Software 1.0 tools
“Classical Computer”

LLM

Context
Window

Disk RAM

CPU

Video Audio

Browser

Other GPTs

Illustration Credit: Andrej Karpathy

Need a Compiler to orchestrate these

https://twitter.com/karpathy/status/1723140519554105733?lang=en

Incorporating a Systems View Helps Resolve These

14

File System
(+embedding)

Calculator
Python Interpreter

Terminal

Software 1.0 tools
“Classical Computer”

Disk

CPU

Video Audio

Browser

Other GPTs

Illustration Credit: Andrej Karpathy

Need a Compiler to orchestrate these
You can even imagine orchestrating the execution to a different LLMs depending on the difficulty

LLaMA
70B

LLaMA
7B

GPT-4 GPT-3

https://twitter.com/karpathy/status/1723140519554105733?lang=en

LLMCompiler: Towards Parallel Function Calling

• Compiler tailored for LLM function calling
– Efficiently orchestrate various function calls and handle their dependencies.

15

LLMCompiler: Towards Parallel Function Calling

• Compiler tailored for LLM function calling
– Efficiently orchestrate various function calls and handle their dependencies.

1. Execute multiple function calls in parallel
if they don’t have interdependency
→ Reduced latency

2. Only forward intermediate values to
dependent tasks → Reduced cost,
Improved accuracy

LLMCompiler: Towards Parallel Function Calling

1. LLM Planner: Given a user input, it automatically identify the necessary tasks, their input arguments,
as well as the dependencies between them using the sophisticated reasoning capability of LLMs

17

LLMCompiler: Towards Parallel Function Calling

2. Task Fetching Unit: Similar to instruction fetching mechanism in contemporary computer architectures,
it (1) replaces variables with the actual outputs from preceding tasks and (2) fetches tasks to the Executor
as soon as they are ready for (parallel) execution.

18

LLMCompiler: Towards Parallel Function Calling

3. Executor: It is equipped with the tools that the user provides, and it delegates the task to the associated
tool. Tools can be simple functions like a calculator, Wikipedia search, or API calls, or they can even be LLM
agents that are tailored for a specific task.

19

LLMCompiler: Towards Parallel Function Calling

Users only need to supply:
1. Tool Definitions: Same as other frameworks (ReAct, OpenAI function calling, etc.)
2. In-context Examples for the Planner: Examples of how the Planner should behave, that can aid the Planner

LLM in generating the appropriate dependency graph in the correct format for incoming inputs

Simple Configuration

20

Dependency Graph Examples

21

Pattern 1: Embarrassingly Parallel Function Calling

22

Pattern 1: Embarrassingly Parallel Function Calling

23

HotpotQA (Comparison)
e.g. Were Scott Derrickson and Ed Wood of the same nationality?
• 2-way parallelizable workload
• Tool: Wikipedia Search

Big Bench -- Movie Recommendation
e.g. Which movie among the options is the most similar to Mission Impossible, The Silence of the Lambs,
American Beauty, and Star Wars Episode IV - A New Hope?
Options: Austin Powers International Man of Mystery, Alesha Popovich and Tugarin the Dragon, In Cold
Blood, Rosetta
• 8-way parallelizable workload
• Tool: Wikipedia Search

Pattern 1: Embarrassingly Parallel Function Calling

24

Open-source Model Support
• LLMCompiler supports both closed-source models (e.g. GPT) and open-source models (e.g. LLaMA).

On the other hand, OpenAI’s parallel function calling is only supported with GPT.

ReAct† : With additional prompt that avoids repetitive function calls and early stopping

Pattern 1: Embarrassingly Parallel Function Calling

25

ReAct† : With additional prompt that avoids repetitive function calls and early stopping

Latency
• By avoiding sequential reasoning and function calling processes, LLMCompiler achieves up to 1.8x

and 3.7x speedup on each dataset compared to ReAct.
• Interestingly, LLMCompiler shows a speedup of up to 35% compared to OpenAI parallel function

calling. One speculation is that there might be additional overheads behind the scene for validating
the function and argument names, etc.

Pattern 1: Embarrassingly Parallel Function Calling

26

ReAct† : With additional prompt that avoids repetitive function calls and early stopping

Accuracy
• LLM Compiler achieves better accuracy compared to ReAct.

– Common issues with ReAct is repetitive function calls and early stopping, which are also
reported in the original paper. LLMCompiler avoids this by setting up a plan ahead-of-time, and
by avoiding unexpected interference of intermediate observations in every reason-and-action
iteration.

• LLMCompiler achieves on-par accuracy compared to OpenAI parallel function calling.

Pattern 1: Embarrassingly Parallel Function Calling

27

Cost
• By reducing the repetitive LLM calls and concatenation of every observation, LLMCompiler achieves

3.4x and 6.7x cost reduction compared to ReAct.

Dependency Graph Examples

33

LLMCompiler Needs a Replanning Capability

34

1. In various applications, the execution graph can only be constructed based on the execution results
of the previous function calling, which is unknown a priori.

e.g. Buying an item on the web – you cannot plan which items to buy before entering the web page

2. Often time, plans may fail or return unexpected outputs, which cannot be anticipated in the planner
phase.

e.g. Search failure

LLMCompiler Needs a Replanning Capability

35

1. In various applications, the execution graph can only be constructed based on the execution results
of the previous function calling, which is unknown a priori.

e.g. Buying an item on the web – you cannot plan which items to buy before entering the web page

2. Often time, plans may fail or return unexpected outputs, which cannot be anticipated in the planner
phase.

“Replanning can be a solution”

e.g. Search failure

The planner plans out a part of the entire plan, see the intermediate results, and plan out the rest

The planner adjusts the original plan if it fails during execution

36

Can answer? Yes!
Output

No..L

Replan

Replanning capability is needed in LLMCompiler!

LLMCompiler Needs a Replanning Capability

The Executor sends the intermediate results back to our LLM Planner.
Based on that, the Planner produces a new set of tasks

LLMCompiler Needs a Replanning Capability

37

e.g. Game of 24: using 4 numbers (e.g. 2, 4, 4, 7), make 24 with any permutation of those numbers, combined
with operations (e.g. (7-4)*2* 4)

Next Though proposer cannot be executed before knowing which
candidates survive -> Needs replanning every step

Proposes candidates

Only select promising
candidates

Step 1

Step 2

Step 3

38

LLMCompiler Needs a Replanning Capability

• Baseline Tree-of-Thought is extremely inefficient in latency since it needs to evaluate every
candidate sequentially

• By executing them in parallel, LLMCompiler achieves 2-3x speedup

Overall Latency and Accuracy Results

39

References

[1] Shunyu Yao et al., Tree of Thoughts: Deliberate Problem Solving with Large Language Models,
https://arxiv.org/abs/2305.10601
[2] Shunyu Yao et al., ReAct: Synergizing Reasoning and Acting in Language Models,
https://arxiv.org/abs/2210.03629
[2] Zhilin Yang et al., HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question Answering,
https://arxiv.org/abs/1809.09600
[3] Aarohi Srivastava et al., Beyond the Imitation Game: Quantifying and extrapolating the capabilities of
language models, https://arxiv.org/abs/2206.04615
[4] Wenhao Yu et al., IfQA: A Dataset for Open-domain Question Answering under Counterfactual
Presuppositions,
https://arxiv.org/abs/2305.14010
[5] Lei Wang et al., Plan-and-Solve Prompting: Improving Zero-Shot Chain-of-Thought Reasoning by Large
Language Models, https://arxiv.org/abs/2305.04091
[6] Xuefei Ning et al., Skeleton-of-Thought: Large Language Models Can Do Parallel Decoding,
https://arxiv.org/abs/2307.15337
[7] Maciej Besta et al., Graph of Thoughts: Solving Elaborate Problems with Large Language Models,
https://arxiv.org/abs/2308.09687
[8] Binfeng Xu et al., ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language
Models, https://arxiv.org/abs/2305.18323

41

https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/2206.04615
https://arxiv.org/abs/2305.14010
https://arxiv.org/abs/2305.04091
https://arxiv.org/abs/2307.15337
https://arxiv.org/abs/2308.09687
https://arxiv.org/abs/2305.18323

LLM Compiler for Parallel Function Calling

• Paper: https://arxiv.org/abs/2312.04511
• Official Codebase: https://github.com/SqueezeAILab/LLMCompiler
• LlamaIndex Integration: https://llamahub.ai/l/llama_packs-agents-llm_compiler?from=llama_packs

Thank You

https://arxiv.org/abs/2312.04511
https://github.com/SqueezeAILab/LLMCompiler
https://llamahub.ai/l/llama_packs-agents-llm_compiler?from=llama_packs

