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Physics Informed Learning

Computational Science is an important tool that we can use to
incorporate physical invariances into learning, but until recently it
was missing from mainstream ML.

“Computational Science can and

. It can explore the effects of thousands of scenarios for or in Data
lieu of actual experiment and be used to study events beyond the
reach of expanding the boundaries of experimental science”

—Tinsley Oden, 2013
Theory

To make further progress in ML it is crucial that we incorporate

computational science into learning.
Hardware

Artificial Maths &
Statistics
visualization

EDA

Physics
Informed
Learning

Intelligence

Largely missing from ML
today

E Dr. J. Tinsley Oden's Commemorative Speech: “THE THIRD PILLAR: The Computational Revolution of Science i
E and Engineering”, Honda Prize, 2013. E



Foundation Models for SciML Tasks?

Create and pre-train on diverse PDE systems
Vary/Sample all inputs (PDE coefficients, source functions, ...)
Include multiple differential operators, predict PDE solution

V-KVu+v-Vu+ ..=f

Foundation Models for ScimL

~

Solve multiple systems using the same pre-trained

model, outperforming training from scratch

Foundation
Model




Q: If we scale the NN/Data, can the model be
used on out of distribution examples?



PDE system 1: Poisson’s equation
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 Inputs: diffusion tensor (K), forcing/source function (f)

« QOutputs: solution to the PDE (u)
« Training dataset: sample diffusion tensors and source functions from a training
distribution



PDE System 2: Advection Diffusion

—divKkKVu+ovVu=f in )

 |Inputs: diffusion tensor (K), wave speed (v), forcing/source function (f)

« Outputs: solution to the PDE (u)
« Training dataset: sample diffusion tensors, wave speeds, and source
functions from a training distribution
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Foundation Model for SciML Tasks?

« Choose FNO as the baseline model for all experiments

« Two common PDE systems: Poisson and Advection-Diffusion
* General strategy:

— Create a base, "'large” dataset to pretrain an FNO

— Test pretrained vs randomly initialized FNO on new ""downstream” dataset
« Control Knobs:

— Data scale: change amount of downstream dataset availability

— Model scale: Scale model parameters to understand scaling laws

— Downstream Task: change ""physical distance” of downstream dataset (OOD)
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FNO is a based on a transformer (mixing) architecture

@—> Fourier layer 1

4){Fourier layer 2

—> @ @ @ —>

Fourier layer T

-

Fourier layer

12



Testing error (relative £5)

Transfer Learning

—divKkVu=f 1in ()
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Out Of Distribution Transfer Learning
—divKkVu=f 1in ()

3 Pretrain Down3tream
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Out Of Distribution Transfer Learning
—divKkVu=f 1in ()

Pretrain Downstream

SYS-1(1, 5) SYS-1(5, 10)
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Out Of Distribution Transfer Learning

—divKkVu=f 1in ()

Pretrain | Downstream
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Testing error (relative £,)

Testing error (relative £,)
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Out Of Distribution Transfer Learning

Downstream Pretrain
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Transfer Learning Behavior vs Model Size

o Pretrain Downstream
SYS-1(1, 5) SYS-1(5, 10)
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Increasing Diffusion Eigenvalue (Fixed Rotation)

Source Sampling
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Pre Train On Multiple Systems

—divKVu=f in —divKVu 4+ vVu = f

Downstream Pretrain Downstream Pretrain
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(c) SYS-2(0.2,0.4): pre-training using

(a) SYS-1(1,2.5): pre-training using SYS-2(0.2,1) and mixed dataset

SYS-1(1,5) and mixed dataset
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Open Problems/Limitations

There are many more open problems/Limitations:
+ Experiments with Real Data:

— Our data comes from numerical simulations of dynamical systems with known coefficients.
Need to test:

 Pretraining with real dataset coming from observations (adds lots of interesting moving
parts related to sensor noise, uncertainty, ill-posed problems)

» There is not enough real data set -> Real + Simulated dataset? Need to address questions
around domain shift between simulation and senor data

* NN Architecture:

— We did not change the FNO model architecture but is that the right model for all kinds of SciML
problems?

* Need to investigate how the architecture should be changed as the underlying dynamics
change

— Elliptical vs Hyperbolic vs Parabolic PDEs may need different architectures

21
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Incorporate Physical Laws into Learning

Harmonic oscillator

* Neural Networks require a lot of data to train .\ Problem

» Collecting large scale data is not always possible,

for many applications, especially in medical and N

scientific domain

‘ Neural network
\ Training step: 10

« However, an important source of data are the ‘

\ - . AN y Exact solution
\ === Neural network prediction

Physical Laws that govern our world which have %

been largely ignored in exchange for observed data o
Physics-informed neural network
\ Training step: 150

* Physical Laws include: |
— Conservation of Mass, Momentum, Energy, etc.

_________________________________

i Illustration from Ben Moseley i 23



Incorporate Physical Laws into Learning

Problem

Harmonic oscillator

\ Neural network

\ Training step: 10

\

\ 7N\

/ \ /N
\ A a A / ~ Exact solution

f ‘\\ / \_ = we Neural network prediction
/ / — Training data

Physics-informed neural network
Training step: 150

————— Exact solution

) we Neural network prediction

) d ) N ) Training data

/ ‘:\ - Physics loss training locations
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Physical Laws as Additional Sources of Data

« Other than observed data, we know the invariances that govern physical phenomena
— Conservation of mass, momentum, energy
— In many cases, we also have approximate models that can predict the system behavior

Lots of Physics Some Physics No Physics

! lllustration Credit: Prof. Karniadakis ! 25



Physical Laws as Additional Sources of Data

« Other than observed data, we know the invariances that govern physical phenomena
— Conservation of mass, momentum, energy
— In many cases, we also have approximate models that can predict the system behavior

Less Data More Data
\ ] |\
| |
Physical Invariances can help Physical Invariances can help
Improve Generalization or make the model easier to train
regularize training with less parameters

The main question is how can we incorporate these invariances into learning?
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Methods for Incorporating Physics into Learning

» Method 1 (Neural Operator): Train on large amount of data and let the NN learn the
physics based operators
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Methods for Incorporating Physics into Learning

» Method 2: Enforce physical laws as hard constraints either in:
— NN Architecture: This is an open problem
— Optimization: Very difficult to train the NN with such constraints

Train the NN on this
dataset

E Xu K, Darve E. Physics constrained learning for data-driven inverse modeling from sparse observations. arXiv preprint arXiv:2002.10521. 2020 Feb 24. E
' Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of !
1 1
1 1
1
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Methods for Incorporating Physics into Learning

« Method 3: Use penalty methods and add the physics model as a residual to the loss.

« Below we consider Burgers’ equation which can be modeled with a PDE (but this approach is
applicable even if your model is different than a PDE)

:u Up + UlUyp — Upy € )
- u(w,t = 0)
um (x,t) €T
Uy
Data Loss Function: Physics Loss Function: /
Lo =i —ul); Lr = ||i + iy — Goa 13

m@inﬁzﬁu—l—)\}-ﬁ}- .



Physics Informed Neural Networks

Method 3: Use penalty methods and add the PDE residual to the loss.
Very easy to implement, and works with any NN architecture
Does not require a mesh or a numerical solver for the PDE

Can (in theory) work for high dimensional problems, and complex PDEs
For example, PDEs containing integral operators which are difficult to solve with

u(t, )

finite difference methods.

u; + uu, — (0.01/n”)u,, =0, xe[-1,1], te€[0,1],

u(0, x) = — sin(7x),
u(t,—1) =u(t,1) = 0.

___________________________________________________________________________________

u(t, )

1.0

0.5

t=0.25 t=0.50
[0y 1
0 0
0 = 04 =
3 S
-1 4 -1
T T
-1 0 1 -1 0 1
T xT
= Exact == = Prediction
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But this is not the entire story

« There are a lot of subtleties in adding a soft-constraint and PINNs actually do not
work as well, even for simple problems.

» To study this, we chose three families of PDEs:
— Advection (aka wave equation)
— Reaction
— Reaction-Diffusion

For all of these cases we observed that PINNSs fail to learn the relevant physics,
since there are many moving parts in this problem

32



Advection Equation

—+B8—=0, z€Q,te]0,T],

Initial condition: u(z,0) = sin(z),
Periodic boundary conditions: u(O, t) — u(27r, t)

memﬁ = Ar|us + Bﬂmug PDE Residual
+ ’fL(:L‘, 0) — sm(:c) ||% Initial Condition
+ ’&(Z‘ = 27‘(’) — ’&(ib = O)”% Boundary Condition

. Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021. ! 33
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PINN can fail to learn Advection

ol
5 -»—Relative error = Absolute error
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1 Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021. i 34
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PINN can fail to learn Advection

Exact solution Predicted solution Difference in exact and predicted solution
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Training: Optimization Challenges with PINNs

Data Loss Function: Physics Loss Function:
L, = ||r&_u||§ Lr = |t + Gty _@m”%
minL =L, + A \rLFr
0

Without Physics Loss With Physics Loss

 lllustration credit: Roman Amici, Mike Kirby ! 36



Training: Optimization Challenges with PINNs
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Rethinking PINNs: Curriculum Learning

« The main idea is to start the training with simple physical constraints and introduce the
complexities iteratively throughout learning

» First let the NN learn the simple problems, before penalizing it for learning the exact PDE

Example: For the advection equation, we start to train the NN with very small velocities, and slowly
increase the velocity to the target one

- Regular training = Curriculum training
30
25|
20|
X 157
10}
5l
Oi\

Training duration
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Open Problems

Rethinking the design, training, and role of data for the successful application of neural
networks in scientific applications

Adaptive Collocation Points
PINN Failures: NeurlPS’21
PyHessian IEEE BigData’'20
Flat/Sharp Minima: NeurlPS’18

ANODEV2: NeurlPS’19
ANODE: |[JCAI'19

On going research on
Large Models for
Physical Systems
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https://papers.nips.cc/paper/2019/hash/227f6afd3b7f89b96c4bb91f95d50f6d-Abstract.html
https://www.ijcai.org/proceedings/2019/103
https://openreview.net/pdf?id=a2Gr9gNFD-J
https://openreview.net/pdf?id=a2Gr9gNFD-J
https://arxiv.org/pdf/1912.07145.pdf
https://proceedings.neurips.cc/paper/2018/file/102f0bb6efb3a6128a3c750dd16729be-Paper.pdf

Open Problems/Limitations

« There are many more open problems/limitations:
* Optimization:
— Unlike all other classical ML tasks, PINNs cannot be optimized with mini-batch
(SGD, ADAM, etc.) and only works with LBFGS with full batch size

— This makes training PINNs very slow and hard to optimize

* NN Architecture:

— Same as the previous limitation. The model we considered is the same as the
original PINN set up, but different NN architectures may exhibit very different
behavior*.

« *Qur preliminary experiments with transformers/attention has not shown
improvements wrt optimization challenges
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Thanks for Listening

Please reach out if you had any feedback/questions:
amirgh@berkeley.edu

References:

* Subramanian S, Harrington P, Keutzer K, Bhimji W, Morozov D, Mahoney M, Gholami A.
Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and
Transfer Behavior. arXiv preprint arXiv:2306.00258. 2023.

» Krishnapriyan A, Gholami A, Zhe S, Kirby R, Mahoney MW. Characterizing possible failure

modes in physics-informed neural networks. NeurlPS, 2021.

41


mailto:amirgh@berkeley.edu

