Quantization Methods for Efficient
ML Inference

Amir Gholami, in collaboration with

Sehoon Kim, Coleman Hooper, Zhen Dong, Xiuyu Li, Sheng Shen, Michael Mahoney, Kurt Keutzer
University of California Berkeley

HotChips 2023

S CALI
D
4 L

(4 7.
b)
z "
2 z
Z 5
8 &
. &
68

UNIVERSITY OF CALIFORNIA

» Why Quantization?

» Basic Concepts of Quantization

» Advanced Concepts of Quantization

Single-Chip GPU Inference Performance

Gains from
Number representation
— FP32, FP16, Int8, FP8
+ Complex instructions
— DP4, HMMA, IMMA
* Process
— 28nm, 16nm, 7nm, 5nm

1000X in 10 years!

4500.00

H100

4000.00
4000.00

3500.00

3000.00

2500.00

Int 8 TOPS

2000.00
1500.00 :
1000.00

500.00

0.00
4112 8/14/13 12127114 5/10/16 /22117 214119 6/18/20 10/31/21 3/15/23

Memory Wall: Main Bottleneck is Memory Bandwidth

Scaling of Peak hardware FLOPS, and Memory/Interconnect Bandwidth

H100
A100 4
10000001 HW FLOPS: 60000x / 20 yrs (3.1x/2yrs) TPUV3
DRAM BW: 40x / 20 yrs (1.4x/2yrs) TPUv4
Inteconnect BW:30x / 20 yrs (1.4x/2yrs)
[
10000 GTX 580 @
g ° *
© °
w0
T HBM3
N PY
r_EU 100 Itanium 2 HBM2
< PY HBM @ GDDR6 °
2 GDDR5 - ® ? o & o .
GDDR3 ° : (') ° [] NVLink 4.0
R10 s g ®e _— NVLink1.0 €20
1 o® o PCle 3.0
. PCle 2.0
Pentium Il Xeon PCle 1.0a
0.01 \I\|I\\'\Il'l\\'\\I'\I\'I\\'\Ill\l\\r\\Il\\I\l\l\Ir\\\l\ll\ll\\ll\\l\l\l\\ll\\ll\ll\ll\\Il\\I\l\l\\ll\III\\\\lll\ll\\l\l\l\\ll\\I
1996 1999 2002 2005 2008 2011 2014 2017 2020 2023

YEAR
Memory is developing much slower than computes

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Memory is becoming increasingly an important
bottleneck!

Quantization is quite effective at reducing model
size, reducing memory operations significantly

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Memory Wall for LLM Inference!

The dominant contributor to runtime is the time for memory bandwidth not compute

Breakdown of LLaMA 7B model with Seq Len of 128 and batch of 1

B Classifier Nonlinear [l MHA (act-2-act) [MHA (FC) [FFN (FC)

5.0000

4.0000

3.0000

2.0000

Runtime (s)

1.0000

0.0000

Precision

©

GPT-3 [des

S Kim*, C. Hooper*, A. Gholami*, Z. Dong, X. Li, S. Sheng, M.
Mahoney K. Keutzer, SqueezeLLM Dense-and-Sparse Quantization,
i arxiv: :2306.07629.

__

Quantization enables low precision arithmetic

* Lower precision weights mean less energy per Multiply-Accumulate

* Also enables putting more MAC units per unit of silicon

PASCAL TURING TENSOR CORE TURING TENSOR CORE TURING TENSOR CORE
FP16 INT 8 INT 4

oy :::-

Sgat
&
-:‘:

',

HIH
St

\\\\\\\\\\\\\ﬂ\\\\\\R\\\\\\A\A;K

SVERRRRTTWWY

_‘
- =
o
Sw.. VA
LiiiiiiiiTng Sy v L

Quantization is great for compute bound inference problems as it allows us to utilize
lower precision ALUs

Energy Consumption

Relative Energy Cost Relative Area Cost

Operation: Energy (pJ) Area (um?2)

8b Add 0.03 36

16b Add 005 | 67

32b Add o1 |l 137

16b FP Add o4 [1360

32b FP Add oo | 4184

8b Mult o2 |l 282

32b Mult 3.1 3495

16b FP Mult 1.1 i 1640

32b FP Mult 3.7 7700

32b SRAM Read (8KB) 5 N/A

1 10 100 1000 10000 1 10 100 1000

Reducing memory movement directly impacts power consumption

i “computing’s Energy Problem, M. Horowitz, ISSCC, 2014 (Numbers are rough approximations for 45nm) i
| Slide: Courtesy of Prof. Shao ;

> Basic Concepts of Quantization

— Uniform vs Non-Uniform Quantization

— Symmetric vs Asymmetric Quantization

— Quantization Granularity: Layer-wise vs Channel-wise
— Dynamic vs Static Quantization

— Post Training Quantization vs Quantization Aware Training

Quantized Inference

FP16 Weight FP16 Activation INT4 Weight INT4 Activation INT4 Weight INT4 Activation
Dequantize
FP16
Multiplication (FP16) Multiplication (FP16) Multiplication (INT4)
lFP16/32 FP16 INT4
Accumulation (FP16) Accumulation (FP16) Accumulation (INT16/32)
lFP16/32 bNT16/32
Requantize Requantize
FP16 Activation INT4 Activation INT4 Activation
FP16 INT4 Simulated Quantization Integer Only Quantization

(Before Quantization) (aka fake quantization)

10

Quantization:

Workhorse for Efficient Inference
« Uniform quantization is a linear mapping from floating point values to quantized integer values

16 55 -34

FP32 INT8
(Before Quantization) (After Quantization)

11

Quantization:

Workhorse for Efficient Inference
T (T Q(r)
Q(r) = Int (g)
0.34 - 5.64 :8 —a -3 - 127
S —
112 | 2.7 0.9 2"B —1 16 55 34
uantize

FP32 INT8
(Before Quantization) o= 564 0 5 =564 (After Quantization)

-——¢>» T

127

Using uniform, symmetric quantization method »

Uniform vs Non-Uniform Quantization

* Uniform Quantization: Split range of weight values evenly
* Non-uniform quantization: No constraint on how the weight values are quantized

0.200 Uniform Quantization Non-Uniform Quantization
' 0.200 0.200
0.175+ 0.175 0.175 |
0.150 + 0.150 0.150 1
0125 0.125 0.125 1
< € €
Z 0.100 5 3 0.100 3 0.100
[
o (9]
0.075+ 0.075 0.075 A
0.050 7 0.050 0.050 4
0.025 | 0.025 ‘ ‘ 0.025 4
0.000 - . 0.000 v v v v v v 0.000 v v 1 v v
¢ -2 o ; -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8
Value of Welght Value of Weight Value of Weight

13

Uniform vs Non-Uniform Quantization

Uniform Quantization Non-Uniform Quantization
Easy to utilize reduced precision ALUs Typically requires inference arithmetic at higher
precision (for example FP16)
Just requires loading scale values and Zero point Requires a Look Up Table
Higher quantization error Lower quantization error
Easy to implement Typically more involved to implement/quantize
0.200 0.200 Uniform Quantization 0.200 Non-Uniform Quantization
0.175+ 0.175 0.175
0.250 1 0.150 0.150
0.125 4 0.125 1 0.125 1
g 0.100 - E 0.100 A E 0.100 A
0.075 - 0.075 A 0.075
0.0=20 - 0.050 1 0.050 A
0.025 0.025 4 ‘ ‘ 0.025 A
0.000 0.000 T T T T T T 0.000 T T + T T
-8 -b -4 -2 ¢ 2 4 L 5 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 14

Value of Welght Value of Weight Value of Weight

Asymmetric vs Symmetric Quantization

Asymmetric Quantization Symmetric Quantization

Suitable for cases where min/max values are very Suitable when min/max values are similar/symmetric
different (e.g. activations after RelLu) around zero point
Typically used for activation quantization Typically used for weight quantization
Requires storing a zero point (2) No zero point required (simpler to implement)

a=-46 0 sz B =56

Asymmetric Quantization Symmetric Quantization
Q(r) =Int(r/S) — Z Q(r) = Int (g)

15

Layer-Wise vs Channel-Wise Quantization

Output: y

Layer N

Layer N-1

Filter 1

—

1

Filter 2

il

Layer 2

Layer 1

T

Input: x

Filter 3

il

Filter C

AN

N

J\

AN

Layer-wise
Quantization

Channel-wise
Quantization

16

Static vs Dynamic Quantization

r
« How do we choose the range [B,a]? Q(’I“) — Int (—)

— For weights, we know the values statically, since weights are fixed during
inference
— But what about activations? We can either use static or dynamic

quantization:

« Static Quantization: Choose pre-determined static range for activations
independent of input
— Very fast, low overhead, but typically not accurate since each input can

have a different range

+ Dynamic Quantization: Determine range for each activation separately during

the runtime
— Typically very slow due to the cost of computing mix/max or percentile

— But very accurate as it exactly detects the correct range for quantization

17

Model Quantization Methods

The quantization schemes we talked about so far assume that we have the model parameters given to us. There
are generally two approaches for getting these values:

* Post Training Quantization (aka training-free quantization):
— Typically just uses the weights after normal training is finished without any extra training.

— Variants of this approach exist where a small amount of calibration data is used to determine the network
behaviour (e.g. to compute range of activations, adjusting normalization constants, and possibly even
adjusting the weights without training).

\ Pre-trained model] [Calibration data

Calibration
v
Quantization

v

Quantized model

Post Training

Quantization 18

Model Quantization Methods

The quantization schemes we talked about so far assume that we have the model parameters given to us. There
are generally two approaches for getting these values:

* Quantization Aware Training

— In this approach, training is performed to adjust the weights by backpropagating the loss through the
quantization operators.

— Performing backprop requires simulated quantization along with Straight Through Estimator for rounding
functions

| Pre-trained model]
v Training data
Quantization
v v
Retraining / Finetuning

v

Quantized model

Quantization Aware

Training 19

Quantization Aware Training

Weigh r 4 Quantized Weight Q

(FP) (INT)

Quantizer -

1.1 2.2 1 2
Forward Pass
17| 3.6 2112 2 | 2
STE
0.1 -0.1 0.1 | -0.1
Backward Pass
-2 - 1 2
-0.2 | 0.2 -0.2 | 0.2

Gradient dL/dr Gradient dL/dQ
(FP) (FP)

v

v

20

Post Training Quantization (PTQ)
vs Quantization Aware Training (QAT)

Post Training Quantization Quantization Aware Training

Usually very fast (1-3 min) Slow (may require hundreds of epochs)

No re-training required Model must be retrained

Less accurate at low precisions Typically more accurate than PTQ

21

Review

> Basic Concepts of Quantization

— Uniform vs Non-Uniform Quantization

— Symmetric vs Asymmetric Quantization

— Quantization Granularity: Layer-wise vs Channel-wise
— Dynamic vs Static Quantization

— Post Training Quantization vs Quantization Aware Training

22

» Advanced Concepts of Quantization

— Dense and Sparse Quantization

23

New LLMs have Significant Outliers

* Weight distribution analysis of LLaMA-7B Model
— Range of the weight values in the Output (MHA) and Down (FFN) projection layers
— Around 99.99% of the values are in the 10-20% of the overall range

* Outliers over-exaggerate the quantization range

Parameter Distribution with Outliers

=
I
K

r

w51 e =m(g)

=
o
o

o]
o
s

a=—5.64 0 B =5.64

Frequency
- o
o o
L L L
S e —
[S ——

N W

-10 0 10 20 30 40 50
Weight Value

24

Dense-and-Sparse Quantization

* Decompose a matrix into a dense matrix and a sparse matrix

W=(D+5)

Parameter Distribution with Outliers Parameter Distribution with Outliers

Parameter Distribution with Outliers
120 120 120
100 1 100 4 'i 100 4
80 | " 80 | 80
> > >
3 9 3
] “ 5 II 5
2 60 — 2 60 S 60
g _— g g
& IS &
40 4 II 40 4 Il 40 -
20

20 1 20 1
ll - - L 0 II' . - - . . 0 . . - . : L
0 10 -10 0 10 20 30 40 50

0 T T
-10 20 30 40 50 -10 0 10 20 30 40 50
Weight Value Weight Value Weight Value

i 25

Dense-and-Sparse Decomposition

* Decompose a matrix into a dense matrix and a sparse matrix

W = |[D+|S

Dense matrix: reduced range Sparse matrix: ~0.1% outliers

— smaller quantization error /

75 29 28 27 0 0
68 57 38 0 0 0
24 62 32 0 0 0
9.7 0 0 23 0 0

(=}
(=1
(=]
(=]
w
o
v
(=]

10 12 14 16)

colind: 0 1 2 0 3 4 5 4 5)

val: (75 29 28 2.7 68 57 3.8 24 6.2 32 9.7 23 5.8 50 6.6 8.1)

Sparse matrix representation using the compressed row storage (CSR)
format

Parameter Distribution with Outliers

120
100 +

i
S
L
S
i |
Il |

T T T T T
-10 0 10 20 30 40 50
Weight Value

Frequency

Parameter Distribution with Outliers

120

100 -

80 1

60 1

Frequency

201

I

T T T T T
-10 0 10 20 30 40 50
Weight Value 26

Dense-and-Sparse Decomposition

* Decompose a matrix into a dense matrix and a sparse matrix

Wx = (D|+|S)x = Dx + Sx =|Qx|+|Sx

o

Dense matrix: reduced range Sparse matrix: ~0.1% outliers

— smaller quantization error
/ Sparse matrix multiplication

(e.g. CuSparse)

75 29 28 27 0 0
68 57 38 0 0 0
24 62 32 0 0 0
9.7 0 0 23 0 0

FP16 dense matrix multiplication
After dequantization

rowptr: (0 4
1 2 3 0 1

7 10 12 14 16
colind: (0 2

N

)
4 5 4 5)

val: (75 29 28 2.7 68 57 3.8 24 6.2 32 9.7 23 58 5.0 6.6 8.1) e

S. Kim*, C. Hooper*, A. Gholami*, Z. Dong, X. Li, S.

Sparse matrix representation using the compressed row storage (CSR) : Sheng, M. Mahoney, K. Keutzer, SqueezeLLM: Dense-
' and-Sparse Quantization, arxiv: :2306.07629.

format T e e .

» Advanced Concepts of Quantization

— Mixed-Precision Quantization

28

Mixed Precision Quantization

How can we perform low precision quantization with minimal generalization loss?

S
64 64
convl8/19

A

\)
/ 32 32
/ \ A [§ A Y \ A Y conv8/9
J —l —lLl J —l J

16 16 16 16 16 16 16
convl conyv’ 2/3 cor 5 convG/T

FC&softmax

4-bit 4-bit 4-bit 4-bit

8-bit 8-bit 8-bit 8-bit

Uniform low precision does not work as it can significantly degrade accuracy

» Use mixed-precision ==> How to determine mixed precision? Exponential search space 29

Flat Loss Landscape = Low Bit Precision

« Uniform quantization is a linear mapping from floating point values to quantized integer values

Flat Loss Landscape

Floating Point values

O 1w e PR 4-bit Quantization

30

Sharp Loss Landscape = High Bit Precision Needed

« Uniform quantization is a linear mapping from floating point values to quantized integer values

Sharp Loss Landscape

Floating Point values

O 1w e PR 8-bit Quantization

31

Hessian Aware Quantization

This is somewhat similar to the Jenga
game. We only remove blocks that are
not sensitive.

> Only use low precision quantization Layer N S

for insensitive parameters (flat loss 7 ===

landscape) LayerN-1 |,
» Use high precision quantization for \

sensitive parameters (sharp loss "\ ==

landscape) \

Layer2 \ _
This sensitivity can be calculated through S \'\ e
Hessian which quantifies the relative \
sharpness/flatness of the loss landscape. Input: =
Image from UniversityCoop
| Dong Z, Yao Z, Arfeen D, Gholami A, Mahoney MW, Keutzer K. Hawg-v2: Hessian aware trace-weighted quantization of neural networks. NeurlPS, 2020. | -

E Yu S*, Gholami A*, Yao Z*, Dong Z*, Mahoney MW, Keutzer K. Hessian-Aware Pruning and Optimal Neural Implant. WACV, 2022. !

https://www.universitycoop.com/media/blog/1908%20Tailgate/jenga%20(2).jpg

Using Hessian to Guide Choice of Bit Precision Layer by Layer

64
convl8/19

32 32
conv8/9

1616 16 16 16 16
conv2/3 conv4 /5 conv6/T

FC&softmax

Downsample

4-bit 4-bit 4-bit 4-bit

8-bit 8-bit 8-bit 8-bit

Z.Yao*, Z. Dong*, Z. Zheng*, A. Gholami*, E. Tan, J. Li, L. Yuan, Q. Huang, Y. Wang, M. W. Mahoney, K. Keutzer, HAWQ-V3: Dyadic Neural Network
Quantization in Mixed Precision, ICML, 2021.

Dong Z, Yao Z, Arfeen D, Gholami A, Mahoney MW, Keutzer K. Hawg-V2: Hessian aware trace-weighted quantization of neural networks. NeurlPS, 2020.
Dong Z*, Yao Z*, Gholami A*, Mahoney MW, Keutzer K. HAWQ: Hessian AWare Quantization of neural networks with mixed-precision. ICCV, 2019.

Training Loss

33

Full Stack Approach for Efficient Conversational Al

* PowerNorm: ICML'20
* SqueezeFormer: NeurlPS’22
e BiLD: In Review

HAWQ-V3, I-BERT: ICML’21 (Oral)

* Optimal Neural Implant: WACV’21

» Zero-shot/integer-only ASR: ICASSP’22
* Learned Token Pruning: KDD’22

* Post-training Pruning: NeurlPS’22

* SqueezelLLM: This Work

% HW * SqueezeNext: CVPR’18

* Genisys: ISCA’23 Workshop

34

Thanks for Listening

Please reach out if you had any feedback/questions:
amirgh@berkeley.edu

Further Reading:
- Gholami A, Kim S, Dong Z, Yao Z, Mahoney MW, Keutzer K. A survey of quantization

methods for efficient neural network inference. In Low-Power Computer Vision 2022.

- Kim S, Hooper C, Wattanawong T, Kang M, Yan R, Genc H, Dinh G, Huang Q, Keutzer K,
Mahoney MW, Shao YS. Full stack optimization of transformer inference: a survey.
Workshop on Architecture and System Support for Transformer Models (ASSYST) at ISCA
2023.

R CALIn
S S,

4 N
& 5
§)
H n
Z 3
® &
2 "
868

UNIVERSITY OF CALIFORNIA

mailto:amirgh@berkeley.edu

