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1 Introduction

SIBIA-GlS is baaed on Gooya et al [8] and on SIBIA (Scalable Integrated
Biophysics-based Image Analysis) [6], a set of algorithms and software for biophysics-
based image analysis. The SIBIA-GlS pipeline comprises two main steps: the
ML-step in which we use supervised machine learning to create probability
maps for the target classes (“whole tumor”, “edema”, “tumor core”, and “en-
hancing tumor”); and the SIBIA-step in which we combine these probabilities
with a biophysical model of tumor growth coupled with large-scale di↵eomor-
phic registration to implicitly impose spatial correlations Besides [8], our work
borrows from [10] and the algorithms and workflows in [22] that summarizes the
BRATS 2012 and 2013 competitions. In this work, we used the training, valida-
tion, and testing datasets of the BRATS 2017 competition [1–3]. The BRATS 17
competition has several metrics to assess the quality of a segmentation. In this
paper we just focus on the “whole tumor” Dice score. We achieve 0.87 median
Dice score (0.84 mean) and 0.84 median Dice score (0.83 mean) for the training
and validation images respectively. The histograms are shown below.

Fig. 1 Dice histograms for “whole-tumor” label. Left: training (285 images); Right:
validation (46 images).
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2 Methods

In this section, we discuss the methodology and the overall formulation for
SIBIA-GlS. First, a few words regarding preprocessing. We normalize the in-
tensities by centering their mean after removing the bottom and top 1% outliers
(for each modality separately). Then, we a�nely register all images to a normal
(segmented) probabilistic atlas image using an L

2 similarity measure and the T1
patient image. All the classification steps take in the atlas space.

Notation: With boldface, we denote vector fields; with normal face fonts we
denote scalar fields. We define the following probability fields: ⇡G (gray mat-
ter), ⇡W (white matter), ⇡F (cerebrospinal fluid and ventricles), ⇡ED (edema),
⇡TC (tumor core), ⇡EN (enhancing tumor), and the ⇡WT (whole tumor) prob-
ability. We also define ⇡

A to be the vector probability for a reference brain
(that may or may not have a tumor, depending on the context), so that ⇡A =
{⇡G ,⇡W ,⇡F ,⇡WT}. We define ⇡

S to be the patient vector probability map.
We use SIBIA-GlS for the “whole-tumor” label and then binary classifica-

tion for the other labels. SIBIA-GlS consists of four main components. First,
the inverse tumor growth model is used to biophysically constrain the ML
classifier. Second, the registration problem used for atlas-based segmentation
(with or whithout tumor). Third, supervised machine learning framework
that provides the initial “whole-tumor” probability. Fourth, the overall cou-

pling that combines the three first components to produce a final “whole-tumor”
probability. We briefly describe these components below.

Tumor model: Given ⇡

A(0) := ⇡

A(x, 0), the probability map of a healthy
brain (i.e., the “atlas”), the forward tumor operator T is given by

⇡

A(1) := ⇡

A(x, 1) = T (g,⇡A(0)). (1)

Here g are tumor growth model parameters that control the tumor growth.
⇡

A(0) comprises ⇡W ,⇡G , and ⇡F , where ⇡

A(1) comprises ⇡W , ⇡G , ⇡F , and
⇡WT . To simplify the notation, we suppress the dependence on the normal atlas
⇡

A(0); we simply write ⇡

A = T (g), where g is the vector of parameters that
control the tumor growth dynamics. In this work we used a simple reaction-
di↵usion model and g is the initial condition for the tumor parameterized by
125 Gaussians.

In the inverse tumor problem, given ⇡

A
⇤ (data with tumor) and ⇡

A(0) (a
normal brain), we solve an optimization problem for g: ming(⇡A(1)�⇡

A
⇤ )

2, were
⇡

A(1) is given by (1). We have omitted (due to space limitations) an additional
regularization term [5–7,11,16] that controls the reconstruction of g.

Registration: We use a velocity-based formulation for di↵eomorphic registra-
tion [4, 9, 12–15]. Given a vector field ⇡

S(0) and a velocity field v, the forward

image registration problem computes a deformation of ⇡S(0) := ⇡

S(x, 0), let’s
call it ⇡S(1) := ⇡

S(x, 0). We abstract this operation using R. That is,

⇡

S(1) = R(v,⇡S(0)). (2)

In the inverse registration problem, we’re given two vector fields ⇡

S(0)
and ⇡

S
⇤ and we seek to compute v such that the di↵erence between ⇡

S(1) and
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⇡

S
⇤ is a small as possible. Formally, minv(⇡S(1)�⇡

S
⇤ )

2 such that ⇡S(1) is given
by (2). We have omitted the necessary regularization for the velocity [13].

Supervised classification: We first identify “whole-tumor” voxels using bi-
nary classification. Then, we classify the “whole-tumor” voxels to “tumor core”
and “edema”. Lastly, we classify the “tumor-core” voxels to “enhancing” and
“non-enhancing”. All these are binary classifications. As featured, we use 288
2D Gabor features per voxel, and we use 50,000,000 training voxels. For the
machine learning step we use nearest neighbor classification (using an in-house
code [20,21]) for the “whole tumor” label. For the binary classifications to distin-
guish edema, and enhancing tumor we used 25,000,000 points and used Light-
GBM, an open-source, random-forest classifier. Both classifiers return proba-
bility maps. The whole-tumor probability maps are passed to the next step to
introduce spatial correlation. Then, the updated ⇡WT , along with the ⇡TC and
⇡EN from LightGBM are combined and threshold to produce the final labels.

Coupled formulation (SIBIA): The inputs to our problem are ⇡S(0) (initial
patient probability map) and ⇡

A(0) (normal atlas without tumor). The outputs
are g and v, and ⇡

S(1) and ⇡

A(1), which contains ⇡WT -the main output of the
SIBIA-GlS part in the pipeline. Formally, the optimization problem (omitting,
for notational simplicity, regularization terms for g and u) is given by

min
v, g

(⇡A(1)� ⇡

S(1))2 such that ⇡

A(1) = T (g,⇡A(0)),

⇡

S(1) = R(v,⇡S(0)).
(3)

Here we assume we have probability maps ⇡A(0) and ⇡

S(0) for both atlas and
patient images and then we try to match them. That means that we need to seg-
ment gray matter, white matter, and CSF and ventricles, in addition to tumor
probabilities. We need this information to be able to calibrate the tumor growth
model through the determination of g. Tumor doesn’t grow in ventricles and ma-
terial properties di↵er in white and grey matter. We obtained these tissue-type
probability maps using probabilistic atlas segmentation averaging registration
with 10 normal brains and two large-deformation di↵eomorphic registration al-
gorithms, DEMONS [17], and our own CLAIRE [14].

3 Results

3.1 SIBIA results

First, we report results for the SIBIA component, assuming a correct and known
⇡WT and shows how we can grow a tumor in atlas space and then map it to
a given tumor in the patient space, to test our joint inversion / segmentation
approach. By adjusting the regularization parameters, we can adjust the regular-
ization provided by SIBIA. We report representative results in Figure 2. SIBIA
can e↵ectively match the given segmentation. All SIBIA runs are in reduced
1283 resolution. The total run time for SIBIA is under 1 minute using a 10-node
configuration (2-socket Xeon E5-2690 v3 (Haswell) with 12 cores/socket).
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Fig. 2 The top row shows the initial configuration (4 images to the left: probability
maps ⇡A(0) (in particular, from left to right, ⇡G , ⇡W , ⇡F and ⇡WT ) at iteration zero; 4
images to the right: mismatch (pointwise residual) between ⇡A(1) and ⇡S(1) at iteration
zero. The second row shows the same configuration at the final iteration of our coupled
tumor inversion and registration scheme. The three images on the bottom show the
corresponding hard segmentation (left: initial label maps given for the atlas image;
middle: deformed configuration of the atlas image (registered to the patient data) with
simulated tumor; right: synthetic patient image. The obtained atlas based segmentation
(middle image) and the ground truth segmentation for the patient are very similar.

3.2 BRATS Validation results

In figure 3, we present segmentation for seven di↵erent BRATS17 cases (from the
training set) for which we get di↵erent Dice scores. We can recover multifocal
tumors and quite complex shapes, but we do have cases with quite bad dice
scores both because of false negatives and positives. Overall, there are several
technical reasons that create problems in our algorithm and we will discuss them
in a longer version of this paper.

4 Discussion

We presented preliminary results for our joint formulation for combining atlas-
based and machine learning-based segmentation. Below we list some observations
on our e↵orts.

– The processing time per patient is about one hour using 10 dual-socket x86
nodes. The most expensive parts is the nearest neighbor classifier and the
20 di↵eomorphic registrations for the gray matter, white matter, and CSF.
Both of them are in full resolution (2042⇥155). SIBIA is much faster because
we use 1283 resolution.

– The nearest-neighbor classifier requires 8 nodes and it uses distributed mem-
ory parallelism based on MPI so that it can handle the problem of finding
nearest neighbors. Notice for each brain we have to find the neighbors of
1.5M voxels in a dataset of 50M voxels. SIBIA and CLAIRE use MPI. The
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Fig. 3 Images from the training set: Top-to-bottom: di↵erent BRATS brains:
CBICA ABO (0.87), CBICA AWH (0.81), CBICA ATB (0.81), CBICA ATX (0.53),
TCIA 242 (0.93), 2013 26 (0.53), TCIA 177 (0.23). In parenthesis, we report the
“whole-tumor” Dice score. Left-to-right: In the first two columns we show our SIBIA-
GlS segmentation (outlined with a red box) followed by the ground truth segmentation
(provided by the BRATS17 organizers). In the last three columns, we show the T2,
T1ce and FLAIR MRI images for each case. In the segmentation images (the first
two columns), white is enhancing tumor, light gray is edema, and dark gray is non-
enhancing tumor.
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nearest neighbors were run on the Stampede 2 system, CLAIRE and SIBIA
on Lonestar 5 system, and combining the segmentations on the Maverick
system, all at TACC.

– The primary classification is key for SIBIA. We need an acceptable initial
guess for the segmentation based on machine learning for good results. SIBIA
cannot correct really bad initial segmentations.

– Our approach is fully automatic. We only need to specify algorithm param-
eters (for the inverse solvers, iterative solvers, etc) . The results are not
overly sensitive to these parameters. The only important parameter is the
thresholding parameter for ⇡WT , which is used to produce a hard segmen-
tation. Although 0.5 seems obvious, using 0.3 produces much better results
(meaning that a voxel is labeled as “whole-tumor” if ⇡WT > 0.3).

– Our approach integrates biophysical simulations with machine learning, opti-
mization, and image analysis. It can provide bio-physical parameters (growth
rate, mass e↵ect, and others) that might be critical for clinical studies to as-
sess the current and/or future state of an individual patient.

– The solvers for the individual building blocks are based on state-of-the-art
technology in scientific computing [6, 12, 14, 18–20].

– Unlike [8], we do not iterate to update the SIBIA segmentation. That’s a
limitation of our scheme and will address in future work.

– High-grade and low-grade gliomas have di↵erent characteristics but we have
not taken this into account. We simple merged all the training data.

5 Conclusion

We have presented preliminary results for SIBIA-GlS—a new framework for
biophysics-based image analysis for glioma segmentation. We demonstrated that
our approach yields promising results. However, several issues remain open. We
obtain excellent results for SIBIA-GlS if the initial proposal for the segmentation
does not contain significant noise. Improving on this initial segmentation will be
key for our future work. In addition to that we will extend our biophysical model
to, e.g., include edema and mass e↵ect. We expect that this will significantly
improve our current results.
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