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Amir Gholami, Andreas Mang, Klaudius Scheufele, Christos Davatzikos, Miriam Mehl, and George Biros

ABSTRACT
We present SIBIA (Scalable Integrated Biophysics-based Image
Analysis), a framework for coupling biophysical models with medi-
cal image analysis. It provides solvers for an image-driven inverse
brain tumor growth model and an image registration problem, the
combination of which can eventually help in diagnosis and progno-
sis of brain tumors. The two main computational kernels of SIBIA
are a Fast Fourier Transformation (FFT) implemented in the library
AccFFT to discretize differential operators, and a cubic interpolation
kernel for semi-Lagrangian based advection. We present efficiency
and scalability results for the computational kernels, the inverse
tumor solver and image registration on two x86 systems, Lonestar
5 at the Texas Advanced Computing Center and Hazel Hen at the
Stuttgart High Performance Computing Center. We showcase results
that demonstrate that our solver can be used to solve registration
problems of unprecedented scale, 40963 resulting in ∼ 200 billion
unknowns—a problem size that is 64× larger than the state-of-the-
art. For problem sizes of clinical interest, SIBIA is about 8× faster
than the state-of-the-art.

ACM Reference format:
Amir Gholami, Andreas Mang, Klaudius Scheufele, Chris-
tos Davatzikos, Miriam Mehl, and George Biros . 2017. A
Framework for Scalable Biophysics-based Image Analysis .
In Proceedings of , , , 13 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Advances in physiology and medical imaging have been essential
tools in prognosis, diagnosis and therapy fostering the develop-
ment of increasingly sophisticated and tightly coupled imaging al-
gorithms and computational biophysical models that target clinical
applications. Examples include cardiovascular diseases [14, 15, 42,
54, 55, 64], oncology [12, 25, 26, 33, 38, 65], and surgical plan-
ing [19, 21, 31, 62]. Typical image analysis tasks are segmentation,
feature extraction for statistical inference (e.g., outlier detection,
population statistics, prognosis), and image registration (for segmen-
tation and surgical planing). Such tasks benefit from an integration
with biophysical models that introduce pathology-specific prior in-
formation. Conversely, development and calibration tasks for tissue-
and organ-level biophysical models are driven by imaging data.

Both biophysically-augmented image analysis and image-driven
biophysical model development are essentially data-assimilation
inverse problems that involve nonlinear partial differential equations
(PDEs). Physics and imaging need to be tightly integrated (both
in terms of software and algorithms), and need to be reliable and
scalable in order to be useful in analyzing clinical data. The need for
scalability is due to the increasing scanner resolution. In the clinical
practice, routine modalities are approaching 5123 voxels per channel,

,
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and most protocols involve several channels. In experimental set-
tings, images can reach the 10, 0003 resolution range or higher [59].
In a clinical setting, we target strong scaling. For modeling and
animal imaging we target weak scaling.

In this paper, we present a framework that can be used for a
large class of data assimilation problems. We consider two inverse
problems, image registration and parameter identification/data assim-
ilation in brain tumor imaging. The target application is atlas-based
image segmentation [12, 26, 53] of magnetic resonance images
(MRI) of glioblastomas (GBM), a type of high-grade primary brain
tumor [13, 48, 63]. First, the patient MRI is co-registered (see §2)
to an already segmented normal-brain MRI and then, the labels
from the normal image are transferred to the patient (through the
registration map). Since the atlas doesn’t have a tumor (whereas the
patient does), a fictitious tumor needs to be grown in the atlas before
the registration. The overall inverse problem is to find the tumor
and registration parameters such that the atlas segmentation can be
transferred to the patient [26, 34].

In this paper, we focus on two subproblems: identifying initial
conditions for a reaction-diffusion tumor growth model (inverse
tumor parameter identification problem) and seeking a velocity
that advects the atlas image to the patient image so that their L2-
distance is small (image registration).

Contributions. We introduce SIBIA, a framework that supports
the solution of coupled image analysis and biophysical models.
SIBIA provides solvers for various PDEs and their adjoints (for
PDE-constrained optimization), regularization operators, interfaces
for medical images, and coupling between the different subproblems.
The overall formulation follows closely several other approaches
in biophysical modeling that opt for a simple but relatively versa-
tile method using a pseudo-spectral fast Fourier-transform (FFT)
for spatial differential operators and a semi-Lagrangian method for
advection (to avoid time-step restriction). Our framework closely re-
sembles the work in [46], where the authors introduced an algorithm
for the image registration problem, described a semi-Lagrangian for-
mulation, and discussed the use of FFTs and how to scale the overall
methodology on distributed-memory architectures using the Mes-
sage Passing Interface (MPI). In this paper, we follow the overall
spirit of the formulation in [46], but with several novel contribu-
tions summarized in the following. Inverse tumor scalability: We
scale the formulation for an inverse tumor growth problem described
in [24] (MATLAB-based) and study its algorithmic and parallel
scalability on real clinical data. A significant challenge is that the
biophysical model involves PDEs with variable coefficients (related
to the tissue properties). We discuss our preconditioner for the elliptic
diffusion operator, and the inversion (i.e., the Hessian). Interpola-
tion operator: The semi-Lagrangian advection requires interpolation
from a regular grid to a scattered grid. In [46], the authors focused
on the MPI implementation. As a result, the interpolation was a sig-
nificant bottleneck consuming 60% to 75% of the runtime. Here we
present an interpolation kernel that it is nearly 10× faster. It employs
a reordering of points, blocking, and vectorization. We have ported
our C++ implementation to Intel Haswell architectures. Switching
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1
Figure 1: Brain tumor simulation results. We display (from left to right) the time progression of a reaction-diffusion model of tumor growth.
The leftmost image shows the initial condition; the rightmost image the solution of the forward problem at t = 1. The bottom row shows a 3D
illustration and the top row an axial slice cut through the center of the tumor. White areas are locations of high tumor cell density and black
areas, locations of low density.

to single precision: Given the level of noise and imaging artifacts
in the data, the modeling errors in the biophysical simulations, and
the target levels of accuracy, double precision is not justified; we
implement our solver in single-precision. This reduces the commu-
nication volume and the memory footprint for the adjoint solves
(which require storing the time history). The work in [46] used one
MPI task per socket (without OpenMP) and thus, in some sense,
wasted resources. With SIBIA we can use 12 cores per node (for
the largest runs) and 24 cores for the smallest runs with no problems.

The two main computational kernels in SIBIA are FFT and
interpolation. Our FFT is based on the open source code AccFFT [22,
23] but with a twist: we have implemented a faster field gradient
computation, which halves the communication of the FFT-based
PDE operators that we encounter frequently in our formulation. In §2,
we discuss the different formulations. In §5, we present a detailed
strong and weak scaling analysis for the tumor and registration
solvers, the performance of the interpolation kernel, and comparisons
with [46]. Another difference to [46], is that we use a more effective
regularization functional [44]. Overall, SIBIA’s registration is 3 to
8 times faster than [46], supports stand-alone reaction-advection-
diffusion solvers for biophysical inverse problems, and their coupling
with registration.

Limitations. SIBIA is limited to regular grids, like most soft-
ware for MRI and CT images. If one needs non-uniform grids, other
approaches are much more appropriate. Although the brain geometry
is quite complicated, we use a penalty method to enforce boundary
conditions. For image analysis, this is sufficient—given the large er-
rors in the brain tumor model. Finally, AccFFT does not use OpenMP
and thus, we have used only MPI in our experiments.

Related work. To our knowledge, the most scalable deformable
image registration algorithm is the one reported in [46]. For a de-
tailed review on image registration algorithms see [46, 56]. There
are many scalable solvers for biophysical simulation but not much
work for problems that are tightly coupled with MRI. In the latter
area, most work is done on single node systems [12, 54]. For brain
tumor, a good review of related work can be found in [5, 26]. The
tumor model we are using is not predictive but it is quite standard in

medical image analysis for tumors [33, 38, 47, 57, 58]. More sophis-
ticated models [30, 35] have a large number of unknown parameters
and are difficult to calibrate. Minimal models are clearly preferable
for medical image analysis [65]. However, one important piece is
missing in our model, the deformation of the brain parenchyma due
to the tumor growth [33]. This is ongoing work.

Regarding the numerical scheme for the tumor and registration,
our formulation is motivated by the need for compatibility between
imaging and biophysics and the need to accommodate different
elliptic operators and fast solvers. We have to tackle three main
elliptic-like operators: the diffusion step (with variable coefficients)
for the tumor problem, the Hessian for the tumor inverse problem,
and the Hessian for the registration inverse problem (Stokes-like
operator). For these reasons we opted for an FFT-based solver due to
its simplicity and robustness. Regarding fast FFT-based PDE solvers
the literature is vast. For a review on parallel 3D FFT see [23].

2 MATHEMATICAL FORMULATION
We present the mathematical formulations for the considered prob-
lems next. We will see that both inverse problems are formulated
as PDE constraint optimization problems, which we transform to
a Lagrangian formulation. We refer to [7, 9, 32] for excellent sur-
veys on theory and algorithmic developments in PDE constrained
optimization.

The optimality conditions, the discretization in space and time,
and algorithmic details of the respective solvers are presented in §3.

Data Assimilation in Brain Tumor Imaging. Our formulation
for modeling the spatio-temporal spread of cancerous cells within
brain parenchyma is widely adopted in the literature [1, 12, 24,
37, 47, 50, 57]. Our formulation captures the rate of change of
cancerous cells represented as a population density c (x , t ) based
on two phenomena: proliferation and net migration of cells.1 The

1We note that this model is only a crude approximation of the complex phenomena asso-
ciated with cancer progression. More complicated models have appeared in the past [30]
that, e.g., account for multiple cell species, chemotaxis, haptotaxis, or vascularization.
Increasing the complexity of our model results in an excessive number of parameters,
which have to be estimated from data or determined heuristically. This makes the calibra-
tion of our model to patient specific data much more difficult. Increasing the complexity
of our model is ultimately inevitable to be predictive.
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πW πG πT

Figure 2: Illustration of the probability maps for different types of
brain tissue. We display (from left to right) the probability maps for
white matter πW (x ), gray matter πG (x ), and the tumor concentra-
tion πT (x ) for an exemplary forward simulation.

proliferation model is logistic, and the net migration of cancerous
cells is modeled using an inhomogeneous (potentially anisotropic)
diffusion operator (see below). This is the forward model, a non-
linear parabolic PDE, for the tumor concentration2 c ∈ [0, 1] defined
on the non-dimensionalized space-time interval ΩB × [0, 1]:

∂tc − ∇ · K∇c − ρc (1 − c ) = 0 in ΩB × (0, 1], (1a)

c = c0 in ΩB × {0}, (1b)

and homogeneous Neumann boundary conditions prescribed on
∂ΩB , where ΩB ⊂ Ω, Ω := [0, 2π )3 ⊂ R3, is the spatial domain
occupied by brain parenchyma and t ∈ [0, 1]. We remove all units
from (1) by non-dimensionalization. We follow [24] and parameter-
ize the initial condition c0 (x ) := c (x , t = 0) in an np -dimensional
space spanned by a Gaussian basis, i.e., c0 = Φp with the parameter
vector p ∈ Rnp . The tensor K (x ) ∈ R3×3 controls the net migration
of cancerous cells c. The parameter ρ > 0 controls the proliferation.

The inputs to our problem are probability maps of tissue types
obtained from the patient’s imaging data [26, 49], in particular white
matter πW (x ), gray matter πG (x ), cerebrospinal fluid πC (x ), and
πT (x ). Figure 2 shows an exemplary dataset in the patient space.3 In
many existing approaches the probability maps πW (x ) (white matter)
and πG (x ) (gray matter) control weights that enter K (x ) with the
common assumption that the cell diffusivity is larger in white matter
than in gray matter [12, 37, 47, 57]. In our inverse tumor problem,
we assume that we know K and ρ from experimental data; we only
invert for the initial condition p. We consider isotropic diffusion, for
which K (x ) := (kW πW (x ) + kGπG (x )) diag(1, 1, 1), parameterized
by kW and kG .

Given πj (x ), j ∈ {T ,C,W ,G}, K , and ρ, in the patient space, our
task is to find the initial tumor density c0 = Φp for (1) that best
explains the tumor cell distribution πT (x ) observed in the imag-
ing data at t = 1; i.e., we seek to minimizes the L2-distance be-
tween model output c1 and patient observation πT . It is well known
from inverse problem theory that the solution p is neither stable nor
unique [28, 36]. One remedy is to stably compute the solution to
a nearby problem by augmenting our formulation with a Tikhonov
regularization model. The resulting inverse problem for recovering
p (i.e., the initial condition c0) from πT reads:

min
p

1
2

∫
ΩB

(c1 − πT )
2 dx +

γ

2
‖p‖22 dx (2)

subject c1 being given by the forward model in (1). γ > 0 balances
regularity of p against the mismatch between c1 and πT .

To solve the inverse tumor problem, probability maps and param-
eters have to be given for the healthy brain without tumor. Because

2We interpret c as probability to encounter cancerous tissue at location x at time t .
3This is a synthetic results based on a forward simulation on real brain imaging data.

we do not have an estimate for the patient’s image without tumor,
we use a standardized brain atlas template. To derive patient specific
results, one approach is to couple image registration with the tumor
problem [1, 26, 34, 66]. The main idea here is to use registration as a
tool to minimize the differences between patient and atlas anatomies.
We need to couple these processes, because a simple registration
between the patient anatomy with tumor and the atlas anatomy is
not possible due to ill-defined correspondences (i.e., presence of the
tumor in only one image). We will address the coupling of our two
approaches in future work. In the following section, we present the
formulation for image registration.

Diffeomorphic Image Registration. We refer to [20, 51, 56]
for an introduction into the field of image registration and its appli-
cations. Image registration is a correspondence problem. The basic
assumption is that there exists a geometric transformation that relates
each point in one image, the so called reference imagemR (x ), to its
corresponding point in another image, the so called template image
mT (x ). We illustrate this in Figure 3. We introduce a pseudo-time
variable t ∈ [0, 1] and model this geometric transformation based
on a transport equation for the intensity values ofmT . The forward
model of our problem is: Given a stationary velocity field v (x )
and a template image mT (x ) compute the transported intensities
m1 (x ) :=m(x , t = 1) at t = 1 by solving

∂tm +v · ∇m = 0 in Ω × (0, 1], (3a)

m =mT in Ω × {0}, (3b)

with periodic boundary conditions on ∂Ω forward in time.
We again formulate the inverse problem as a PDE constrained

optimization problem. The task is to find a plausible velocity field
v (x ) so that the transported intensities of mT at t = 1, i.e., the
solution m1 (x ) := m(x , t = 1) of (3) is similar to mR (x ) for all x .
Related formulations can, e.g., be found in [6, 8, 10, 29, 40, 43, 46,
61]. We search for a minimizer

min
v

1
2

∫
Ω
(m1 −mR )

2 dx +
βv
2

∫
Ω
∇v : ∇v dx (4)

subject to the forward model in (3). The second term in (4) enforces
smoothness for v with the regularization parameter β > 0. To be
able to guarantee the existence and uniqueness of a solution of both,
the forward and the optimization problem, one has to impose appro-
priate smoothness requirements on the images and the velocity.4 A
key requirement in medical imaging is that the solution of (3) does
not introduce any foldings, i.e., a volume element does not collapse
to a single point, and characteristics traced byv do not cross. This
is ensured by the regularization operator in (4). In this work, we
additionally control the volume change by introducing a penalty
on the divergence of v, i.e., we add the constraint ∇ · v = w and
penalize variations in w by introducing an addition regularization
norm with regularization weight βw > 0 [44]. Setting w to zero
yields an incompressible diffeomorphism [10, 43, 46].

3 ALGORITHMS
In this section, we discuss the discretization in space and time, the
solvers, the computational kernels, and the parallel implementation
of the optimization problems in §2. We use a globalized, precondi-
tioned, inexact, reduced space Gauss–Newton–Krylov method for

4We refer to [4, 6, 10] for a theoretical discussion.
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reference image template imagetemplate image deformed template image

before after

residual differences

reference image template imagetemplate image deformed template image

before after

residual differences

Figure 3: Image registration. The inputs to this inverse problem are scalar intensity values of two images of the same object (left). The inherent
assumption is that there exists a geometric transformation that relates points in the reference image mR to its corresponding points in the
template imagemT (green arrows). We model this geometric transformation based on the transport equation (3). The deformed template image
is illustrated in the middle. The residual between the images before and after registration is shown on the right. The images depicted here are a
2D illustration (axial slice) of the 3D image registration problem solved in §5.

both problems. Based on the derivation of the optimality conditions,
we describe the individual numerical building blocks of our scheme.

Optimality Conditions. We use the method of Lagrange mul-
tipliers [41] in an optimize-then-discretize approach. That is, we
first compute variations of the Lagrangian functional with respect
to the state, adjoint, and control variables, and then discretize them.
We will see that the resulting equations are complex multi-physics
operators that are challenging to solve in an efficient way.

Tumor. The Langrangian function for the tumor reads

LT =
1
2

∫
ΩB

(c1 − πT )
2 dx +

γ

2
‖p‖22dx +

∫
ΩB

α0 (c0 − Φp) dx

+

∫ 1

0

∫
ΩB

α (∂tc − ∇ · K∇c − ρc (1 − c )) dx dt (5)

with the Langrange multiplier function α , and α0 (x ) = α (x , t = 0).
We invert for the parametrization p for c0 in (1a). The gradient of
LT in terms of p is given by

дp := γp − ΦTα0 (6)

This defines the non-linear problem we have to solve for p. To
obtain α0, we have to solve the adjoint equation stemming from the
gradient of LT in terms of c:

−∂tα − ∇ · K∇α − αρ (1 − 2c ) = 0 in ΩB × [0, 1), (7a)

α − (πT − c ) = 0 in ΩB × {1}, (7b)

with Neumann boundary conditions on ∂ΩB , backward in time. Note
that the final condition in (7a) at t = 1 depends on c, which is the
solution of the forward problem (1).

Registration. The Lagrangian function of the image registration
problem reads5

LR =
1
2

∫
Ω
(m1 −mR )

2 dx +
βv
2

∫
Ω
∇v : ∇v dx

+

∫ 1

0

∫
Ω
λ (∂tm +v · ∇m) dx dt +

∫
Ω
λ0 (m0 −mT ) dx (8)

with the Lagrangian multiplier function λ and λ0 (x ) = λ(x , t = 0).
We invert for the transformation velocityv. The gradient of LR in
terms ofv is given by

дv := −βv

∇

v +K [
∫ 1

0
λ∇m] dt , (9)

where K is a pseudo-differential operator that enforces additional
constraints on the divergence of v (see [44]; for (8) K is simply

5We neglect the incompressibility constraint for clarity

an identity operator). To evaluate дv in (9) for a candidate velocity
field v, we need to find the state and adjoint variable m(x , t ) and
λ(x , t ), respectively. We obtain them from setting the gradients of
LR in terms of λ and m to zero, i.e., by solving (3a) forward in time
and using m at t = 1 as an initial condition for the adjoint equation:

−∂tλ − ∇ · λv = 0 in Ω × [0, 1), (10a)

λ =mR −m in Ω × {1}. (10b)

with periodic boundary conditions on ∂Ω, backward in time. Having
found λ(x , t ), we can evaluate (9). In our actual implementation,
we do not store λ. We integrate the second term in (9) directly
when solving (10), instead. This allows us to make the memory
requirements of our solver almost independent of nt ; we only have
to store the transported intensities m (to be able to evaluate the
Hessian matvec).

Spatial Discretization. We use regular grids to discretize the
space-time interval Ω × [0, 1], Ω := [0, 2π )3 ⊂ R3. The spatial grid
consists of N0×N1×N2, Ni ∈ N grid points xi := (x0,i ,x1,i ,x2,i ) ∈
R3, x j,i := 2πi j/Nj , 0 ≤ i j ≤ Nj − 1, j = 0, 1, 2. We follow [46] and
use a spectral projection scheme for all spatial operations. That is,
we approximate spatial functions u as

u (x ) =
∑
k ûk exp(−k · x ), (11)

where k = (k0,k2,k2) ∈ N3, −Nj/2 + 1 ≤ kj ≤ Nj/2, j = 0, 1, 2, is
the grid index and ûk are the spectral coefficients ofu. The mappings
between the spatial and spectral coefficients are done using FFTs.
We approximate derivative operators by applying the appropriate
weights in the spectral domain; i.e., spatial differentiations involve
a forward FFT, modification of weights in the spectral representa-
tion (11), and subsequently an inverse FFTs. Given that we use a
spectral collocation scheme, we assume that the functions in our
formulation (including images) are periodic and continuously differ-
entiable. We apply appropriate filtering operations and periodically
extend or mollify the discrete data to meet these requirements.

The tumor problem in (1) requires Neumann boundary conditions
on the surface of the brain ∂ΩB . We follow [24, 34] and use a
penalty approach to approximate these boundary conditions. We
apply periodic boundary conditions on ∂Ω and set the diffusion
coefficient outside of ΩB equal to a small penalty parameter Kϵ .

Numerical Time Integration. Fulfilling the first order optimality
conditions, i.e., zero gradients of the Lagrange formulation, requires
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a repeated solution of parabolic or hyperbolic PDEs. In the follow-
ing, we sketch our time integration schemes for these systems.

Parabolic PDEs. We follow [24, 34] and use an unconditionally
stable, second-order Strang-splitting method to solve the parabolic
equations (1) and (7). We explain this for the forward problem (1).
Let cj ∈ RN denote the tumor distribution at time t j = j∆t , ∆t =
1/nt . We apply an implicit Crank–Nicolson method for diffusion
and solve the reaction part analytically:

(I − 0.25∆tD)c† = (I + 0.25∆tD)cj (12)

∂t c = ρc(1 − c) in (t j , t j+1) (13)

c(t j ) = c† (14)

(I − 0.25∆tD)cj+1 = (I + 0.25∆tD)c(t j+1). (15)

We use a PCG method with a fixed tolerance of 1e−6 to solve (12)
and (15). The preconditioner is based on a constant coefficient ap-
proximation of D given by D̃ = I − 0.25∆tK̃

∇

, where K̃ > 0 is the
average diffusion coefficient. The inversion and construction of this
preconditioner has vanishing computational cost due to our spectral
scheme; it only requires one Hadamard product in the Fourier do-
main and one forward and backward FFT. This preconditioner can
be shown to result in a mesh independent condition number as long
as the mesh is fine enough to resolve the diffusion coefficient. Since,
for medical images, we can have large contrast and sharp transitions,
the grid to resolve the operator can become prohibitively large; a
lack in resolution manifests in an increase in the number of Krylov
iterations, as we increase the mesh size.

Hyperbolic PDEs (Transport Equations). We employ a semi-
Lagrangian scheme [18] to solve the hyperbolic transport equations.
The use of semi-Lagrangian schemes in the context of image regis-
tration is not new; see [6, 10, 45, 46] for details. Semi-Lagrangian
schemes are unconditionally stable, which allows us to keep the
number of time-steps small. This is critical for large-scale 3D ap-
plications. The solution algorithm for one time step of a transport
equation (3), e.g., consists of two steps:

solve dty = v(y) backward in [t j , t j+1) (16)

y(t j+1) = x (17)

m(x, t j+1) = m(y(t j ), t j ). (18)

The scheme requires evaluating v and m along y, i.e., locations that
do not coincide with grid points. Both steps involve interpolation. It
is critical to design a fast interpolation operator (see §4). Our ODE
solver for (16) is a second-order explicit Runge–Kutta scheme. Note
that, since we invert for a stationary velocity fieldv (x ), (16) needs
to be solved only once during each Newton step.

Inversion. We use a matrix-free, globalized, inexact Gauss–Newton
algorithm for numerical optimization. The update rule for a control
variable uk at iteration k reads

uk+1 = uk − αkH
−1g, αk > 0, (19)

where H−1 is a Gauss–Newton approximation of the inverse of the
Hessian6, g a discrete representation of the gradient of the optimiza-
tion problem. For the tumor case, the control variable uk is given
by p ∈ Rnp and for the registration by v ∈ R3n with N = N0N1N2.
The step length αk > 0 is determined by an Armijo line search and
is chosen such that we decrease the value of the objective function
in every iteration. Storing and inverting H using a direct solver is
prohibitively expensive. We use an iterative PCG method instead,
which only requires an expression for the action of the Hessian on a
vector (Hessian matvec). We further reduce computational cost by
inverting H only inexactly [17, 52]. Our solver uses PETSc’s TAO
module [3]. Our code implements the operations for evaluating the
objective functions, the gradient, and the Hessian matvec.

Despite the complexity of the whole formulation, it turns out
the main computational bottlenecks are FFTs and interpolations.
We will see in §5 that these computations make up 80% to 90%
of the entire time spent in the solver. We will describe the parallel
implementation of these kernels and present dedicated strategies to
significantly speed up their single core performance next.

4 PARALLEL ALGORITHMS AND
COMPUTATIONAL KERNELS

The main computational kernels of SIBIA are the FFT used for
spatial differential operators in our spectral approach and the inter-
polations in the semi-Lagrangian scheme for advection. Below, we
discuss specific performance optimizations for each of these two.

FFT for Spectral Operators. Spatial differential operators such
as gradient or divergence can be computed in our spectral approach
by first transforming the input field into the frequency domain (FFT),
followed by a Hadamard transform and an inverse FFT. We use a
2D pencil decomposition for 3D FFTs [16, 27] to distribute the data
among processors and support parallel FFT on CPU/GPU for both
single and double precision computations. Exemplarily, we consider
computing the x-derivative of a scalar field f :

fx = F
−1
x (−iωxFx ( f )), (20)

where Fx denotes the FFT transform in x direction. Note that, to
compute the x-derivative, we only need a batched 1D FFT instead
of a 3D FFT. This saves a large amount of communication since no
repartitioning of data for the pencil decompositions in y direction
is required. However, we still have to perform a global transpose to
establish the pencil decomposition in x direction. This is followed
by a forward FFT transform in x-direction, a Hadamard product, a
local inverse FFT, and another global transpose to redistribute the
data. Parallel FFT libraries such as P3DFFT or AccFFT allow the
user to specify which directions the local forward/inverse FFT is
needed but there is no way to avoid unnecessary global transposes in
y direction (or x when computing y derivative). We have enhanced
AccFFT such that it avoids all unnecessary global transposes, which
for the x-derivative reduces 4 global transposes to just 2 (as shown
in Algorithm 1). This new implementation reduces the total global

6We can derive the Hessian from the second variations of the Lagrangian functional of
our problem. We omit these details and refer to related work [2, 24, 43, 44, 46].
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Table 1: Experiment to evaluate the efficiency of the binning method in the interpolation. We use N fixed departure coordinates and compare
the results with those for random departure coordinates within each processor’s domain. For the fixed coordinates, the 64 grid values required
for the interpolation are only loaded once for the entire N interpolations. In the random test, different grid values have to be loaded per
departure point. The first two columns show the total interpolation time along with the achieved GFLOPS for the fixed test. The second set is
for the no binning and no vectorization case of the random test. Adding binning without vectorization yield substantial improvements for large
problem sizes. In addition, we show the results without binning but with AVX2 SIMD (vectorization) enabled showing a clear performance
improvement. Adding binning method along with SIMD provides the best performance. For large problem sizes, the main speedup is achieved
by the binning. The experiment was performed on 1 Haswell node with 24 MPI tasks. The reported GFlops include the time needed to reshuffle
the interpolated values in the binning method.

Fixed Point Random Departure Points
No Bin, No SIMD Bin, No SIMD No Bin + SIMD Bin + SIMD

N Interp Time GF Interp Time GF Interp Time GF Interp Time GF Interp Time GF Speedup
643 1.8e−4 356 1.4e−3 45 1.4e−3 45 2.2e−4 280 2.1e−4 295 6.56 x
1283 1.4e−3 347 1.2e−2 42 1.1e−2 44 3.4e−3 146 2.0e−3 256 6.1 x
2563 1.4e−2 287 1.5e−1 28 8.8e−2 45 3.4e−3 54 2.3e−2 173 6.18 x
5123 1.1e−1 287 2.6 13 8.1e−1 40 1.7 19 2.9e−1 112 8.62 x

transposes to 4 for the gradient (as opposed to 8), and 4 for the diver-
gence operator (as opposed to 8) 7. This reduces the communication
volume by a factor of two.

Algorithm 1: Fast algorithm for computing x derivative, which only requires

two global transposes as opposed to four.

Input :Data in spatial domain.
Layout: N0/P0 × N1/P1 × N2

Output :x derivative
Layout: N̂0/P0 × N1/P1 × N2

N0 × N1/P0 × N2/P1
T
←−−−− N0/P0 × N1/P1 × N2; // input data

N̂0 × N1/P0 × N2/P1
F FT
←−−−− N0 × N1/P0 × N2/P1; // Hadamard and FFT

N̂0/P0 × N1 × N2/P1
T
←−−− N̂0 × N1/P0 × N2/P1; // x derivative

Interpolation. As explained in §3, the transport equations in the
registration are solved using Semi-Lagrangian scheme that requires
costly interpolation of velocities and image data along backward
characteristics. The value of a scalar (or vector) field f , at an off-grid
point (x ,y, z) (departure coordinate) can be computed as:

f (x ,y, z) =
d∑
i=0

d∑
j=0

d∑
k=0

fi jk `i (x )`j (y)`k (z), (21)

li (x ) =
d∏

n=0;i,n

x − xn
xi − xn

, (22)

where fi is the function value at grid point i, `i is the i th Lagrange
basis polynomial, and d is the interpolation order, which is cubic
in our algorithm. Using a higher order method would lead to better
hardware performance, but in practical applications with real data,
the use of higher order interpolation does not improve the registration
quality. Therefore, we focus on optimizing cubic order interpolation,
which requires the computation of 12 Lagrange basis polynomials
and the evaluation of Eq. 21 for each departure point. Note that
each departure point requires a different set of 64 fi jk grid values,
which creates a significant number of cache misses that cannot
be hidden by the few floating point computations. However, it is
possible to alleviate this problem by a novel approach: There is no
reason to process the departure points based on the order that they
7Note that we do not need 8 global transposes since the z direction is owned locally
by each process, and we only need to perform local FFTs to compute the gradient in z
direction.

were received. Instead, we can group the departure coordinates that
are close to each other. We achieve this by sorting the departure
points during the scatter phase using a space filling sort such as
morton sort. We optimized this sorting by partitioning the domain
and the departure points into bins, i.e., patches of 16 × 16 × 16
grid cells. Instead of sorting all departure points, we just sort the
bin ids to determine offline which bin has to be processed first.
This phase can actually be performed offline analytically since it
does not depend on the departure point coordinates (only depends
on the grid and bin size). Our experimental results show that this
approach is very effective in reducing cache misses. In addition, we
use SIMD vectorization for the interpolation kernel (based on AVX2
on Haswell). The effect of each of these optimization is tested on
Lonestar5, in Table 1.

The second focus for optimization in parallel interpolation is the
scatter phase, i.e., sending all points on the backward characteristics
that land in another processor’s domain to the respective MPI rank.

These communications are costly and affect the scaling. However,
since the velocity field is stationary, we need to only scatter the co-
ordinates of the off-grid interpolation points once for each advection
problem. We use a sparse point-to-point alltoallv for communicat-
ing these data. In summary, our optimizations for the interpolation
kernel include a novel approach to reduce cache misses by using
a binning method, AVX vectorization of the kernel, and OpenMP
support resulting in a significantly better interpolation kernel than
the one presented in the work of [44]. We are now bound by the com-
munication time instead of the time spent in interpolation kernel.

5 RESULTS
We report results for the tumor inversion and for the registration.
We report the overall runtime,8 execution and communication times
for the computational kernels, and the total time spent to evaluate
these kernels.9 We always report the maximum time across all MPI
tasks. We will also discuss the algorithmic scalability of the tumor
diffusion solver, i.e., the number of PCG iterations as we increase
the problem size. We also discuss parallel scalability of the different
kernels, and report the overall scalability.

8The runtime is the time spent on the entire inversion (excluding setup and I/O times).
9The overall kernel evaluation time includes execution, communication, and shuffling
of the data.
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Setup, Implementation, and Hardware. We execute runs on
Lonestar 5 (2-socket Xeon E5-2690 v3 (Haswell) with 12 cores/socket,
64 GB memory per node) and Hazel Hen (same node as Lonestar but
with 128 GB memory per node). Our code is written in C++ and uses
MPI for parallelism. It is compiled with the default Intel compilers
available on the systems (Intel 16). We use PETSc’s implementa-
tions for linear algebra operations, PETC’s TAO package for the
nonlinear optimization [3], AccFFT for Fourier transforms [22, 24],
and PnetCDF for I/O [60].

Data assimilation in brain tumor imaging. In this section, we
study the computational performance and parallel scalability of the
tumor inversion solver for real brain data as illustrated in Figure 1.
We use resampled medical brain image data with a spatial resolution
N ∈ {643, 1283, 2563, 5123} and present scalability results for up to
16, 384 MPI tasks on Hazel Hen.

Setup. For all tumor inversion experiments, we set the regularization
parameter γ = 10−3, the number of time steps nt = 4 and use double
precision. We perform three Gauß-Newton iterations for the inver-
sion and limit the number of Hessian matvecs in the PCG solver to
three. This setup results in an overall gradient reduction by one order
of magnitude and 13% relative mismatch for the reconstructed tumor.
Using nt = 4 is not sufficient to resolve the dynamics accurately but
it puts pressure on the forward solver and allows us to monitor its
algorithmic scalability. We report the time to solution as well as the
percentage and absolute time spent in the Hessian matvec, the PCG
solver and the FFT, which is the main computational kernel in the
tumor inversion. For all the strong scaling runs, we use 12 MPI tasks
per node.
Strong Scaling. We report scaling results for different spatial resolu-
tions N ∈ {643, 1283, 2563, 5123} and different numbers of MPI tasks
P ∈ {21, . . . , 214}. The results are reported in Table 2. For N = 2563,
we observe excellent strong scaling performance with a parallel effi-
ciency of 98 %, going from 32 to 2048 MPI tasks (runs #13–#19). The
time consumed by the FFT accumulates to approximately 82 % of
the overall runtime. Thus, the tumor inversion scalability is mainly
inherited from the AccFFT. Similar conclusions can be drawn from
the N = 1283 and N = 643 experiments, yielding a slightly lower but
still acceptable parallel efficiency of 67 % from 4 to 256 MPI tasks
and 52 % from 2 to 32 MPI tasks, respectively The ideal runtime
(assuming 100% parallel efficiency) along with the actual runtime
and the amount of time spent in the FFT are summarized in Figure 4
for the strong scaling experiments given in Table 2. Considering the
N = 5123 runs, we observe a degradation of the parallel scalability
for more than 2048 MPI tasks (runs #24–#27). Our analysis showed
that MPI routines generate an increasing overhead using more than
2048 MPI tasks with 12 tasks per node. Increasing the MPI buffer
size and the maximum message size for the MPI eager messaging
protocol improved the performance of run #25 by around 30 % (run
#26). Usually, the diffusion solve consumes up to 98 % of the overall
runtime, which, drops down to 50 % for the runs that show poor
scalability, indicating that performance is lost due to non-optimized
MPI settings. Summarizing, for up to a total number of 2048 MPI
tasks, we get almost optimal strong scaling results with a parallel
efficiency from 60 % up to 100 %, cf. Figure 4. We encounter some
MPI related communication issues going beyond 2048 MPI tasks.

Using hybrid parallelism with OpenMP is expected to resolve the
issue.
Weak Scaling. For the same setting, we analyze algorithmic and
parallel weak scaling10, indicated by effW and ẽffW , respectively,
in Table 2 (exemplarily highlighted, runs #3, #10, #17, #24, #26).
We observe an algorithmic weak scaling efficiency of around 30 %,
increasing both, the number of unknowns in space and the number
of MPI tasks by a factor of eight. Since the grid is not sufficiently
large to resolve the diffusion operator, we observe a mesh-dependent
number of iterations with increasing resolution—from 10 iterations
per diffusion solve (on average) for N = 643 to 50 per diffusion
solve for N = 10243. For the parallel weak scaling efficiency ẽffW ,
where we keep the number of PCG iterations constant yielding an
efficiency of about 45 %, again increasing the number of unknowns
and the number of tasks by a factor of eight. With respect parallel
efficiency, the weak scaling performance perfectly correlates with
the FFT, which in turn deteriorates due to the communication. Using
only two MPI tasks per node (one per socket), the (parallel) weak
scaling efficiency increases to 80 % going from resolution 643 to 1283
(runs #29–#32), which is acceptable considering the overhead for
memory allocation and increasing communication time. We solve
the inverse tumor problem for realistic brain geometries with a 2563
resolution up to a relative gradient of 1.20e−4 in 22 minutes using
512 MPI tasks on Hazel Hen. This corresponds to a reduction of
the objective function by three orders of magnitude and a relative
reconstruction mismatch of 0.2 %.

Diffeomorphic registration. We consider an open-access data
repository that has been widely used in the medical image com-
puting community to study the performance of diffeomorphic im-
age registration algorithms—the Non-rigid Registration Evaluation
Project (NIREP) [11].11 This data is illustrated in Figure 3. The
original resolution of the data is (N0,N1,N2) = (256, 300, 256).12

We also consider a simple test example to demonstrate large-scale
results for grid sizes of up to 40963. This results in an inversion
for ∼ 200 billion unknowns (if we just count the velocity field
v and ignore the state and adjoint fields). This synthetic problem
(SYN) is generated by solving the forward problem. We set the
template image tomT (x ) = (sin(x1)2 + sin(x2)2 + sin(x3)2))/3 and
transport it with the velocity velocity v (x ) = (v1 (x ),v2 (x ),v3 (x ),
v1 (x ) = sin(x3) cos(x2) sin(x2), v2 (x ) = sin(x3) cos(x3) sin(x3),
and v3 (x ) = sin(x2) cos(x1) sin(x1).
Setup. We fix several parameters across all runs: We use twelve MPI
tasks per node. We set the number of time steps to nt = 4. We use
an H1 regularization model with a penalty on the divergence ofv to
control volume change (regularization weight βw = 1e−4). We use
a quadratic forcing sequence. We report a strong scaling analysis
using the NIREP datasets with resolution levels κl · (256, 300, 256),
κl ∈ {1/4, 1/2, 1, 2}. We empirically set the regularization parameter
for the velocity v to βv = 1e−2. We limit the number of Newton

10Algorithmic scaling includes numerical effect such as increasing number of iterations,
whereas parallel scaling only measures the scalability of a fixed number of executions
of the components.
11The data can be downloaded from http://nirep.org; the interested reader is
referred to [11] for more details. We consider the datasets na01 and na02 for our
experiments.
12We transfer the images to a finer or coarser grid based on a cubic interpolation
model. We band-limit the data by applying a Gaussian smoothing operator with a spatial
bandwidth of hi , i = 1, 2, 3.

http://nirep.org
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Table 2: Computational performance of the tumor solver for real brain data, illustrated in 1 on HLRS’s Hazel Hen. We perform three
Gauß-Newton iterations with a regularization parameter γ = 10−3, and limit the number of Hessian matvecs in the PCG solver to a maximum
of three. We report time to solution, time spent in the Hessian matvec, in the FFT, and in the diffusion solver, respectively (in seconds). We show
the strong scaling efficiency effS and the algorithmic weak scaling efficiency effW . For the parallel weak scaling efficiency ẽffW , the number of
PCG iterations for the diffusion solver is fixed for all spatial resolutions. Timings are reported as a function of the number of unknowns (in
space), and the number of nodes and tasks. For runs marked with † we encountered MPI problems due to non-optimal settings. Performance
could be improved by increasing the MPI buffer and the maximum message size for the MPI eager protocol (run marked ‡).

N nodes tasks runtime effS effW (ẽffW ) FFT ([%]) H-matvec ([%]) diffusion ([%])

#1 643 1 2 4.07e+1 100.0 100.0 (100.0) 3.23e+1 (79.5) 2.57e+1 (63.2) 3.98e+1 (97.8)
#2 1 4 2.60e+1 78.2 100.0 (100.0) 2.12e+1 (81.7) 1.64e+1 (63.3) 2.55e+1 (98.1)
#3 1 8 1.33e+1 76.6 100.0 (100.0) 9.92 (74.7) 8.38 (63.1) 1.30e+1 (97.9)
#4 2 16 6.05 84.0 100.0 (100.0) 5.05 (83.5) 3.82 (63.2) 5.89 (97.4)
#5 3 32 4.81 52.8 100.0 (100.0) 4.14 (86.1) 3.02 (62.8) 4.68 (97.3)

#6 1283 1 4 4.91e+2 100.0 4.24e+2 (86.3) 3.14e+2 (63.9) 4.87e+2 (99.2)
#7 1 8 3.07e+2 80.0 2.56e+2 (83.2) 1.96e+2 (63.9) 3.04e+2 (99.1)
#8 2 16 1.37e+2 89.6 29.7 (43.7) 1.12e+2 (81.5) 8.77e+1 (64.0) 1.36e+2 (99.2)
#9 2 32 8.46e+1 72.6 30.7 (45.2) 6.72e+1 (79.5) 5.41e+1 (63.9) 8.38e+1 (99.1)
#10 6 64 4.15e+1 73.9 32.0 (46.8) 3.24e+1 (78.1) 2.65e+1 (63.9) 4.11e+1 (99.0)
#11 11 128 2.08e+1 73.7 29.0 (42.0) 1.71e+1 (82.2) 1.33e+1 (63.8) 2.06e+1 (98.7)
#12 22 256 1.13e+1 67.7 42.5 (60.9) 9.49 (83.7) 7.20 (63.5) 1.11e+1 (98.0)

#13 2563 3 32 1.58e+3 100.0 1.31e+3 (82.9) 1.02e+3 (64.4) 1.57e+3 (99.1)
#14 6 64 8.06e+2 98.2 6.75e+2 (83.7) 5.19e+2 (64.4) 7.99e+2 (99.1)
#15 11 128 3.63e+2 109.0 11.2 (22.9) 3.01e+2 (82.9) 2.35e+2 (64.7) 3.61e+2 (99.5)
#16 22 256 1.81e+2 109.6 14.4 (29.3) 1.49e+2 (82.6) 1.16e+2 (64.4) 1.80e+2 (99.5)
#17 43 512 1.00e+2 98.9 13.3 (26.6) 8.26e+1 (82.5) 6.45e+1 (64.4) 9.95e+1 (99.3)
#18 86 1024 4.03e+1 123.0 15.0 (31.0) 3.45e+1 (85.7) 2.55e+1 (63.4) 3.97e+1 (98.6)
#19 172 2048 2.50e+1 98.9 19.2 (38.5) 2.17e+1 (86.9) 1.59e+1 (63.5) 2.38e+1 (95.0)

#20 5123 22 256 2.52e+3 100.0 2.15e+3 (85.2) 1.65e+3 (65.5) 2.50e+3 (99.4)
#21 43 512 1.32e+3 95.8 1.13e+3 (86.2) 8.61e+2 (65.5) 1.31e+3 (99.4)
#22 86 1024 7.54e+2 83.5 5.4 (13.6) 6.24e+2 (82.8) 4.93e+2 (65.4) 7.52e+2 (99.7)
#23 172 2048 3.47e+2 90.7 7.5 (19.0) 2.87e+2 (82.8) 2.32e+2 (66.9) 3.45e+2 (99.4)
#24 342 4096 2.57e+2 61.2 5.2 (11.6) 1.98e+2 (77.1) 1.66e+2 (64.6) 2.50e+2 (97.3)
#25† 683 8192 2.00e+2 39.3 3.0 (5.6) 1.30e+2 (65.1) 1.32e+2 (65.9) 1.71e+2 (85.5)
#26‡ 683 8192 1.43e+2 55.1 4.2 (7.8) 9.20e+1 (64.4) 8.96e+1 (62.7) 1.15e+2 (80.7)
#27† 1366 16384 3.89e+2 10.1 1.2 (2.0) 2.16e+2 (55.6) 2.34e+2 (60.2) 2.69e+2 (69.2)

#28 10243 2732 32768 1.61e+3 100.0 0.8 (1.2) 6.58e+2 (40.9) 9.25e+2 (57.5) 8.19e+2 (50.8)

#29 643 2 4 2.20e+1 100.0 (100.0) 1.85e+1 (84.2) 1.40e+1 (63.5) 2.15e+1 (97.7)
#30 1283 16 32 4.00e+1 55.0 (80.7) 3.49e+1 (87.2) 2.56e+1 (64.1) 3.94e+1 (98.6)
#31 2563 128 256 6.96e+1 31.6 (64.8) 6.05e+1 (87.0) 4.52e+1 (65.0) 6.90e+1 (99.1)
#32 5123 1024 2048 1.39e+2 15.9 (37.5) 1.14e+2 (82.3) 8.82e+1 (63.7) 1.36e+2 (98.2)
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Figure 4: Summary of strong scaling efficiency of tumor inversion for real data. See Table 2 for exact timings. We display time to solution and
time spent in the FFT (in seconds) as a function of the number of unknowns (in space) and the number of tasks.
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Table 3: Computational performance for our distributed-memory algorithm for diffeomorphic image registration. This study is performed on
TACC’s Lonestar 5 (runs #1 to #28; NIREP datasets; see Figure 3) and HLRS’ Hazel Hen (SYN datasets). We use 12 MPI tasks per node. We
set the upper limit for the Gauss–Newton iterations to three/five and the number of PCG iterations to five/ten for NIREP/SYN. We report (from
left to right) the total time spent in the inversion (runtime/time-to-solution), the strong scaling efficiency, the time spent in the computational
kernels (spectral operations/FFT and interpolation), respectively (in seconds) as a function of the number of unknowns N (in space), and the
number of nodes and tasks. All timings are accumulated. We report the max. value across all MPI tasks; “total FFT” corresponds to the time
spent in all spectral operations; “FFT comm.” is the communication time; “total interp.” is the overall time spent in the interpolation; “interp.
kernel” is the time spent on the execution of the interpolation operator, and “interp. comm” is the communication time for the interpolation.
We also report the strong scaling efficiency and the percentage of the total interpolation and FFT time with respect the overall runtime.

N nodes tasks runtime eff. total FFT ([%]) FFT comm. total interp. ([%]) interp. kernel interp. comm.

#1

(6
4,
75
,6
4)

1 2 2.07 100.0 8.21e−1 (39.7) 9.31e−2 1.05 (51.0) 7.18e−1 6.71e−2
#2 1 4 1.13 91.4 4.83e−1 (42.7) 7.36e−2 5.30e−1 (46.8) 3.70e−1 3.68e−2
#3 1 8 6.26e−1 82.6 2.67e−1 (42.7) 4.44e−2 2.87e−1 (45.9) 1.95e−1 1.78e−2
#4 2 16 3.70e−1 69.9 1.72e−1 (46.6) 6.88e−2 1.59e−1 (43.1) 9.84e−2 9.95e−3
#5 3 32 2.47e−1 52.3 1.27e−1 (51.3) 7.51e−2 9.28e−2 (37.5) 5.00e−2 5.54e−3

#6

(1
28
,1
50
,1
28
)

1 2 2.15e+1 100.0 9.35 (43.4) 5.07e−1 9.91 (46.0) 6.83 8.22e−1
#7 1 4 1.13e+1 95.4 5.06 (44.9) 6.73e−1 5.05 (44.7) 3.42 4.28e−1
#8 1 8 6.19 86.9 2.79 (45.0) 3.89e−1 2.78 (44.9) 1.82 2.32e−1
#9 2 16 3.30 81.6 1.59 (48.2) 5.52e−1 1.44 (43.6) 9.24e−1 1.14e−1
#10 3 32 1.79 75.2 8.94e−1 (50.0) 3.86e−1 7.50e−1 (41.9) 4.63e−1 5.93e−2
#11 6 64 1.04 65.0 5.61e−1 (54.2) 3.68e−1 4.22e−1 (40.8) 2.32e−1 3.05e−2
#12 11 128 6.49e−1 51.8 3.69e−1 (56.9) 2.64e−1 2.47e−1 (38.1) 1.22e−1 1.90e−2

#13

(2
56
,3
00
,2
56
)

1 2 2.36e+2 100.0 1.13e+2 (48.0) 6.40 1.02e+2 (43.4) 5.88e+1 1.05e+1
#14 1 4 1.22e+2 96.4 6.04e+1 (49.3) 8.33 5.25e+1 (42.9) 2.95e+1 5.51
#15 1 8 6.73e+1 87.6 3.23e+1 (48.0) 4.58 2.99e+1 (44.5) 1.56e+1 3.95
#16 2 16 3.59e+1 82.1 1.82e+1 (50.7) 7.80 1.55e+1 (43.2) 7.82 2.69
#17 3 32 1.81e+1 81.4 9.38 (51.8) 3.60 7.48 (41.3) 3.92 1.18
#18 6 64 9.70 76.0 5.57 (57.5) 3.30 3.93 (40.5) 1.99 7.07e−1
#19 11 128 4.63 79.5 2.72 (58.6) 1.50 1.69 (36.5) 9.98e−1 1.49e−1
#20 22 256 2.66 69.2 1.63 (61.1) 1.21 9.81e−1 (36.9) 4.98e−1 8.26e−2
#21 43 512 1.52 60.5 8.09e−1 (53.1) 6.15e−1 6.43e−1 (42.2) 2.54e−1 6.80e−2

#22

(5
12
,6
00
,5
12
)

2 16 3.28e+2 100.0 1.81e+2 (55.0) 4.84e+1 1.35e+2 (41.2) 6.33e+1 2.50e+1
#23 3 32 1.73e+2 94.7 9.57e+1 (55.2) 2.85e+1 6.86e+1 (39.6) 3.17e+1 1.15e+1
#24 6 64 8.66e+1 94.7 5.04e+1 (58.2) 2.42e+1 3.48e+1 (40.2) 1.59e+1 6.31
#25 11 128 4.32e+1 94.9 2.46e+1 (56.9) 1.10e+1 1.63e+1 (37.8) 7.95 2.84
#26 22 256 2.36e+1 87.0 1.56e+1 (66.3) 1.08e+1 8.83 (37.5) 4.03 1.64
#27 43 512 1.31e+1 78.1 8.92 (67.9) 6.56 4.41 (33.6) 2.03 7.27e−1
#28 86 1024 6.35 80.7 4.35 (68.5) 3.52 2.02 (31.9) 1.02 2.08e−1

#29 10243 11 128 1.97e+2 100.0 1.20e+2 (60.9) 3.30e+1 6.90e+1 (35.0) 2.35e+1 2.23e+1
#30 22 256 9.88e+1 99.7 6.17e+1 (62.5) 2.15e+1 3.49e+1 (35.4) 1.16e+1 1.16e+1

#31 20483 86 1024 2.10e+2 100.0 1.37e+2 (65.0) 4.33e+1 7.21e+1 (34.3) 2.73e+1 2.40e+1
#32 171 2048 1.11e+2 94.8 7.17e+1 (64.7) 2.63e+1 3.64e+1 (32.8) 1.35e+1 1.05e+1

#33 40963 342 4096 4.42e+2 100.0 3.22e+2 (72.8) 1.31e+2 1.17e+2 (26.4) 4.20e+1 3.97e+1
#34 684 8192 2.38e+2 93.1 1.73e+2 (72.9) 8.27e+1 6.25e+1 (26.3) 2.10e+1 2.30e+1

iterations to three and the number of PCG iterations to five. The
relative tolerance for the gradient is set to 1e−1 (we do not reach
this tolerance for these runs). We limit the Newton iterations to five
and the Krylov iterations to ten for the synthetic large scale runs
(N = 10243, N = 20483, and N = 40963). The relative tolerance for
the gradient is 1e−2. We also report a run for the entire inversion.
We set the relative tolerance for the gradient to 1e−1. This run is
performed on the same images used in [44].

Results. We report the strong scaling analysis for the NIREP datasets
as well as the synthetic large scale run in Table 3. We illustrate the
strong scaling results for the real data also in Figure 5. We report
accumulated timings for the max values across all MPI tasks in
seconds as well as the strong scaling efficiency. The timings are as
follows: (i) “total FFT”: time spent in all spectral operations; (ii)
“FFT comm.” communication time for the FFT, (iii) “total interp.”:
overall time spent in the interpolation, (iv) “interp. kernel”: time
spent on the execution of the interpolation operator, and (iv) “interp.
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Figure 5: Strong scaling performance for diffeomorphic image registration. The results correspond to Table 3. We report the time to solution
and the time spent in the computational kernels (summarized), respectively (in sec.) as a function of the number of unknowns (in space), and
the number of MPI tasks.

comm”: communication time for the interpolation. We also report
the percentage of the total interpolation and FFT time with respect
to the overall runtime.
Observations. We spend almost all time (∼90%) in the execution of
the FFT and the interpolation (see Table 3 and Figure 5). We achieve
excellent strong scaling results for clinically relevant problem sizes,
with an almost perfect scaling for the execution of our computational
kernels (application of the FFT and evaluation of the interpolation
operator locally). We can fit conically relevant problems on one a
single node with 64GB of memory (see, e.g., run #13). The number
of MPI tasks for a specific problem size is, in our current implemen-
tation, limited by the support of the interpolation kernel/the size of
the ghost layer; for a cubic interpolation model, we need at least
3 × 3 × N2 points on each MPI task.

We showcase results that demonstrate that our solver can be used
to solve registration problems of unprecedented scale (40963 result-
ing in ∼ 200 billion unknowns—a problem size that is 64× bigger
than the state-of-the-art presented at last year’s SC [44]. The weak
scaling efficiency for these runs is 62.7%, 44.6%, and 32.6% when
comparing the runtime for run #1 to the runs #9, #19, through #28.
The communication time for the FFT increases as we increase the
problem size. We expect to see this behavior, since the FFT is com-
munication bound. This negatively affects our weak scaling results
(the total FFT time is for run #28 almost exclusively dominated by
the FFT communication time; 80%). This observation is consistent
with the results we report for the tumor case. The weak scaling
performance for the interpolation is very good (50% in total when
comparing runs #1 and #28). Having good strong scaling perfor-
mance is critical for image registration. We can see that we achieve a
quite good strong scaling for our runs (between 52.1% (run #5) and
80% (run #28); this is in particular visible in Figure 5. The execution
times for our computational kernels show excellent strong scaling
results. The efficiency eventually deteriorates as we increase the
number of cores. The amount of data we have to communicate in the
interpolation phase essentially depends complexity of the character-
istic. In a worst case scenario (which we do not expect in practical
applications) all departure points may end up on one node. Semi-
Lagrangian schemes can help us to alleviate potential imbalances
(in contrast to purely Lagrangian schemes [6]). If the characteristic
becomes to complex, we can introduce more time points to our prob-
lem. However, this will negatively affect the time-to-solution, as we
have to perform more interpolations.13

We analyze our results for original resolution of the NIREP data
sets in more detail: For these experiments, we can reduce the gradient

13An analysis of the number of interpolations we have to perform can be found in §3.

by a factor of 3.17e−1 and the mismatch between the transported
template image and the reference image by a factor of 1.89e−1. The
balance of the runtime spent on the individual components of our
scheme is the same throughout all runs. We perform 32 PDE solves.
The PDE solves is where the entire runtime goes. For instance, for
run #13 we spend 87% of the total runtime (2.36e+2 sec. of 2.06e+2
sec.) on solving the transport equations of our system. These solves
are done in the evaluations of (i) the objective functional (four
evaluations.; 1.85e+1 sec.), the gradient (four evaluations.; 2.69e+1
sec.), and the Hessian matvec (twelve evaluations.; 1.78e+2 sec.).
As we can see from this analysis, we spend most of the time runtime
on the Hessian matvec. When we switch from two MPI tasks to 512
we can reduce the run time by a factor of about 150 (1.52 sec.; 60.5%
efficiency). For the synthetic case we can solve our problem (reduce
the gradient by two orders of magnitude) within 2 iterations (14 PDE
solves; 4 Hessian matvecs; relative change in the gradient: 9.66e−3;
relative change of the mismatch: 7.18e−2; run#30). The overall weak
scaling efficiency for these runs is 82.9% (128 MPI tasks for 10243
versus 8192 MPI tasks for 40963). For an entire registration solve on
256 MPI tasks on 32 nodes, the new formulation requires 14 Hessian
matvecs for the same problem reported in Table 5 in [46] and similar
registration quality. Bringing everything together (formulation and
fast computational kernels), we can reduce the runtime by a factor
of 8× over the state-of-the art.

Conclusions. We presented SIBIA, a computational framework
for coupling biophysical models with medical image analysis. To
the best of our knowledge, SIBIA is the first work on scalable
algorithms for an integrated approach for biophysics-based image
analysis in brain tumor imaging. Our major accomplishments and
observations are the following: we achieve excellent strong scaling
performance on clinically relevant problem sizes for both algorithms
(from 60% up to 100% parallel efficiency). Moreover, 80% to 90%
of the runtime is spent in the computational kernels (FFT and inter-
polation). We were able to improve the performance of these kernels
by a factor of roughly 8 (interpolation) and 2 (FFT) over the state
of the art. For the tumor problem, we saw that the scalability is
inherited from AccFFT [22, 24]. The preconditioner for the tumor
solver is not mesh independent for real data at this resolution levels.
For the registration, we solved an inverse problem with ∼200 billion
unknowns on up to 8192 cores—a problem size that is 64× larger
than [46], rendering our solver applicable to, e.g., the registration
of high-resolution CLARITY imaging data [39, 59], and (R2) we
could improve the time-to-solution by a factor of about 8 compared
to [46].
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6 ARTIFACT DESCRIPTION APPENDIX
In this section we explain the details of our implementation and
testing environment:

Hardware: We execute runs on two supercomputing systems:
The Lonestar 5 system at the Texas Advanced Computing Center
in Austin, TX, US (system specifications: dual socket Xeon® E5-
2690 v3 (Haswell) with 12 cores per socket (24 cores/node) at
2.6GHz with 64 GB memory per node) and Hazel Hen at the High-
Performance Computing Center in Stuttgart, DE (system specifica-
tions: dual socket ® Xeon® E5-2680 v3 (Haswell) with 12 cores per
socket (24 cores/node) at 2.5GHz with 128 GB memory per node).
Our code is written in C++ and uses MPI for parallelism. It is com-
piled with the default Intel compilers available on the systems (Intel
16). We use PETSc’s implementations for linear algebra operations,
PETC’s TAO package for the nonlinear optimization [3], AccFFT
for Fourier transforms [22, 24], and PnetCDF for I/O [60].

Third Party Software. We use PETSc’s implementations for
linear algebra operations, PETC’s TAO package for the nonlinear
optimization [3? ], AccFFT for Fourier transforms [22, 24], and
PnetCDF for I/O [60]. We use FFTW version 3.3.4 for building the
AccFFT library with the following flags:
--enable-threads --enable-openmp --enable-mpi

--enable-avx CFLAGS=-O3

Data Sets: We use McGill BrainWeb data set for the brain geom-
etry as an Atlas. For the registration we consider an open-access data
repository that has been widely used in the medical image computing
community to study the performance of diffeomorphic image regis-
tration algorithms—the Non-rigid Registration Evaluation Project
(NIREP) [11].14 For the interpolation tests (in Table 1) we create
random points generated with drand48() function in c++, in the local
domain of each process. For the fixed departure point case, we set
all the departure points to be half the grid size.

Modules Used: On Lonestar 5 machine we use the following
modules:

• intel16.0.1
• cray_mpich/7.3.0
• TACC1.0
• cmake3.7.1
• cuda6.5

On Hazel Hen machine we use the following modules:
• intel/16.0.3.210
• craype-haswell
• craype-network-aries
• cray-mpich/7.5.3
• cray-petsc/3.7.4.0
• PrgEnv-intel/5.2.82
• cray-parallel-netcdf/1.7.0

We used the following flags to configure and build PetSc in single
precision on Hazel Hen:
./configure

--with-mpi-dir=/opt/cray/mpt/7.5.3/gni/mpich-intel/16.0
--known-mpi-shared-libraries=0

14The data can be downloaded from http://nirep.org; We consider the datasets
na01 and na02 for our experiments.

--download-fblaslapack=../fblaslapack-3.4.2
--with-64-bit-indices
--with-precision=single
--with-shared=0 --with-batch

We compile all of our codes with “-O3 -xhost” flags. The external
libraries are linked statically.

Interpolation Experiments. The interpolation experiment of
Table 1 is performed on a single node of Lonestar5 machine using
an interactive session. The data was collected by setting
OMP_NUM_THREADS=1 and the binary was run using tacc_affinity
script which sets the NUMA control options. We used intel 16 com-
piler to build the code. The timings were collected as the average of
100 repetitions. Before collecting the data we perform 10 warmup
interpolation calls which are not timed. The GFlops is computed by
consider the total execution time rather than just the local interpola-
tion time to account for the time needed to reshuffle the departure
points. This is necessary since in the binning approach the points are
processed in a different order. The no vectorized version of the code
was optimized and we checked that the compiler does not incorrectly
assume any dependencies in the code by creating a “qopt-report=5”
flag when compiling the code.

Tumor Inversion Experiments. The tumor inversion experi-
ments were conducted on Hazel Hen machine using double preci-
sion. For all runs we use 12 MPI tasks per node. For run #26 we
additionally set the environment variables
MPICH_GNI_MAX_EAGER_MSG_SIZE=131072
MPICH_GNI_NUM_BUFS=1024

in order to improve the MPI performance. We report the maximum
timings over all MPI tasks.

http://nirep.org
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