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ABSTRACT
We present a novel numerical scheme for solving the Stokes
equation with variable coefficients in the unit box. Our
scheme is based on a volume integral equation formulation.
Compared to finite element methods, our formulation de-
couples the velocity and pressure, generates velocity fields
that are by construction divergence free to high accuracy
and its performance does not depend on the order of the
basis used for discretization. In addition, we employ a novel
adaptive fast multipole method for volume integrals to ob-
tain a scheme that is algorithmically optimal. Our scheme
supports non-uniform discretizations and is spectrally accu-
rate. To increase per node performance, we have integrated
our code with both NVIDIA and Intel accelerators. In our
largest scalability test, we solved a problem with 20 billion
unknowns, using a 14-order approximation for the velocity,
on 2048 nodes of the Stampede system at the Texas Ad-
vanced Computing Center. We achieved 0.656 petaFLOPS
for the overall code (23% efficiency) and one petaFLOPS
for the volume integrals (33% efficiency). As an application
example, we simulate Stokes flow in a porous medium with
highly complex pore structure using a penalty formulation
to enforce the no slip condition.

1. INTRODUCTION
We propose an algorithm for the Stokes equations in the

unit cube with variable coefficients, which can be stated as

ρu− div (µ(∇u+∇uT )) +∇p = f, divu = 0. (1)

Here, u = u(x) is the (vector-valued) velocity, p = p(x) is
the (scalar-valued) pressure, f = f(x) is a (vector-valued)
momentum source, and x ∈ [0, 1]3. The first equation is the
conservation of momentum and the second the conservation
of mass—also known as the incompressibility condition. Pe-
riodic, free-space, Dirichlet, Neumann, or mixed boundary
conditions on the faces of the unit cube can be applied. The
variable coefficients ρ = ρ(x) and µ = µ(x) are related to
the fluid density and viscosity respectively.
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Equation (1) models nearly incompressible flows (steady
or unsteady upon temporal discretization) in which the con-
vective inertia is neglected. Such flows are found in microflu-
idics, biofuels, emulsions, polymers, porous and fractured
media flows, and geophysical flows. Also, (1) can be used to
model incompressible elastic materials with a homogeneous
matrix phase and a random distribution of micron-sized par-
ticles in the matrix like reinforced elastomers, microgel sus-
pensions, and biological tissues. Finally, solvers for equation
(1) can be used as part of implicit-explicit time-stepping
schemes for Navier-Stokes problems, in which the nonlinear
convection is treated explicitly.

Designing numerical methods for (1) is challenging. The
main difficulties are summarized below.
• It requires four unknowns per spatial grid point in

three dimensions (three velocities and one pressure).
• Satisfying the incompressibility condition accurately is

hard but crucial for obtaining the correct results.
• We cannot use arbitrary discretization spaces for the

velocity and pressure because the inf sup condition [17]
must be satisfied.
• Discretizations of (1) result in ill-conditioned systems.

The need for different discretization spaces for velocity
and pressure necessitates block preconditioners.
• Equation (1) is an elliptic but indefinite problem, which

further complicates the construction of fast linear alge-
braic solvers and preconditioners, especially for prob-
lems with highly variable coefficients or high-order dis-
cretizations [6].

Due to the importance of Stokes solvers, sophisticated tech-
niques have emerged that can tackle the challenges described
above. Discretizing and solving (1) is typically done using
finite element methods (FEM) and, to a lesser extent, us-
ing finite-difference or finite volume methods [17]. Many
theoretically-optimal technologies have been developed for
constant and variable coefficients. In practice, however,
most existing codes that have been scaled to large core counts
have demonstrated scalability only for low-order implemen-
tations, typically first- or second-order accurate [7, 8].

1.1 Contributions
We propose a scheme that circumvents most of the chal-

lenges associated with stencil-based discretizations. Writing
ρ(x) and µ(x) as perturbations around constant values ρ0
and µ0, that is ρ(x) = ρ0 + ρ̃(x) and µ(x) = µ0 + µ̃(x), it is
possible to transform (1) to a second-kind volume integral
equation for the velocity u only:

u+ G[ρ̃u] +D[µ̃(∇u+∇uT )] = G[f ], (2)

where G is a convolution operator with a boundary condition-
dependent Green’s function for the Stokes problem and D



Figure 1 Here we illustrate the capabilities of our solver. We simulate Stokes flow through a porous medium. From left: in the first figure, the
grey color indicates the solid phase geometry and the space in between is the pore space. We also visualize the velocity field using streamlines.
In the second figure we show the same geometry with clipping to better visualize the streamlines. The third figure shows the leaves of the
octree and the fourth one the spatial partitioning across different nodes. Weak scalability results for this problem are reported below.
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Figure 2 Breakdown of time in seconds for different stages of the solver for CPU
and CPU+Phi runs, respectively. We use the PETSc library for the GMRES solver.
The remaining implementation is done in our group. The ‘MatMult’ phase is the
application of the integral equation matrix operator to a vector. We break it down to
computation and communication. We observe excellent scalability from one to 2048
nodes. Each node has 16 x86 cores, and a Phi co-processor. The clock per core is
2.7GHz. We report more information about this run in Table 1.

p Ndof/p Niter Tsolve tflops η
1 8.0e+6 155 477 0.36 1.00
6 7.8e+6 115 388 2.27 1.04

27 8.6e+6 101 401 10.3 1.05
125 8.5e+6 98 419 45.3 0.99
508 8.9e+6 92 444 173 0.94

2048 9.1e+6 90 474 656 0.88

Table 1 Solve time, total flop rate and parallel effi-
ciency of the solver for porous media flow, for weak
scaling up to 2K compute nodes on Stampede using
CPUs and the Intel Phi accelerator. The CPU code
and Phi portions of the code are multithreaded and
vectorized. For the GMRES solve we use the PETSc
library; the GMRES calculation is not accelerated
with Phi. The GMRES iterations do not depend on
the mesh size (in fact they are reducing with increas-
ing mesh size). Here ρ = 0 in the pore phase and
ρ = 1E + 9 in the solid phase.

is the symmetric part of its gradient. The Green’s functions
correspond to any constant-coefficient values ρ0 and µ0, e.g.,
the average values of µ and ρ. The derivation and precise
expressions are stated in §2. In other words, to solve (1) we
solve (2) for the velocity u. Once the velocity has been com-
puted, the pressure and overall stress can also be computed
by evaluating appropriate convolution integrals.

Our formulation has several nice characteristics. It results
in a second-kind Fredholm equation with a condition number
that is independent of the mesh size; it depends only on the
magnitude of ρ̃ and µ̃. The incompressibility condition is
satisfied pointwise due to the Green’s function formulation.
The equations for velocity and pressure are decoupled. We
can evaluate the pressure as a post-processing step. There
is no inf sup-type restriction on approximating p.

Formulations like (2) for variable-coefficient boundary value
problems are well known [13] but have not been used for
Stokes problems. One possible reason is the lack of tech-
nologies to evaluate G accurately and efficiently. G and D
are formally dense operators. They are convolutions, but for
non-uniform discretizations, fast Fourier transforms can not
be used. A second possible reason is that the singularities in
G and D make their computation extremely expensive, re-
sulting in huge constants in the complexity estimates. The
third possible reason is that the method requires the knowl-
edge of a Green’s function that accounts for the boundary
conditions. Thus, the method is restricted only to simple ge-
ometries. In this paper, we try to address these issues. We

demonstrate that the quadratures and the convolution can
be done accurately and efficiently. Also, we show how one
can approximate complex geometries using penalization. In
particular,

• We present a volume integral formulation of Stokes
equation and demonstrate the feasibility of the ap-
proach (§2, §2.3).
• We conduct a performance study and report time-to-

solution for various smooth and discontinuous prob-
lems (§3). In section §2.2, for the constant coefficient
case, we compare our results with finite-element dis-
cretizations using Deal.II an award-winning state-of-
the-art finite-element library [3].
• We demonstrate scalability on single core, GPUs, MIC,

and MPI architectures (§3) and report, to our knowl-
edge, one of the largest, high-order Stokes runs.
• We apply it to porous medium flows in complex ge-

ometries using a penalization approach. An example
is shown in Figure 1 and scalability results in Figure 2
and Table 1.
• We make our code freely available1.

Our method consists of a fast volume integral evaluation
scheme that efficiently computes the convolution operators
G and D using a volume fast multipole method. We use 2:1
balance restriction of the tree to enable precomputation of
all singular or near-singular integrals offline. Also, we use

1http://padas.ices.utexas.edu/sc14stokes.tgz
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highly optimized kernels for x86, Intel Phi, and NVIDIA
Kepler architectures. We use PETSc’s [2] Krylov iterative
solvers for the solution of the integral equation.

Since our solver supports variable coefficients, the case of
complex geometries can be treated with several methods.
For low-order approximations a penalty formulation can be
used. We present an example in this paper. For high-order
accuracy ideas similar to overset grids [12] and domain de-
composition methods [10] can be used. The geometry is
first decomposed into subdomains that are diffeomorphic to
the unit cube and matched with appropriate boundary con-
ditions. Each subdomain can be solved with our scheme.
Algorithms for high-order accuracy and complex geometries
are ongoing work in our group.

1.2 Related work
An integral equation for Navier-Stokes in two dimensions

was reported in [16], but the formulation and algorithms
were specific to a disk geometry and do not generalize to
arbitrary geometries in 2D or to 3D. We are not aware of
any other work on volume integral equation formulations
for Stokes with variable coefficients. Of course, there is a
lot of work on solvers for Stokes boundary integral equa-
tions [23,24] but they are not applicable for discretizing (1)
for arbitrary ρ and µ. A key component of our solver is the
efficient evaluation of the convolution operators G and D in
(2). In 2D, a fast scheme was proposed in [14] and a 3D
extension is discussed in [20]. We use a scheme that uses
a novel algorithm for traversing near and far-field integrals.
Our volume fast multipole scheme along with the new traver-
sals for the far and near interactions are described in [22].
We are not aware of any other work on scalable algorithms
for evaluating G or for solving volume integral equations.

For finite element methods for steady Stokes problems we
refer the reader to [5] and [17]. For unsteady Navier-Stokes,
most solvers are based on pressure-projection schemes, which
do not work well for stationary problems. For Stokes solvers,
state-of-the art implementations include [7,8], and [19]. The
latter is done with Deal.II, an open source package with
which we compare our code for the constant coefficient case
on a single core. One of the most scalable Stokes runs is re-
ported in [9] in which the authors solve problems with up to
two billion unknowns on 120K cores using linear elements.

The majority of scalable finite element codes for the Stokes
equation use low-order discretizations. An exception is the
work in [6] in which the author studies the convergence
rates of different high-order discretizations along with the
costs of solving the related algebraic system of equations.
Multigrid-accelerated block preconditioners result in mesh-
independent behavior for all orders. However, the constants
deteriorate with increasing approximation order. A cubic
velocity-linear pressure (Q3 − Q1) discretization required
41 iterations for six orders of magnitude reduction in the
Krylov residual, whereas a seventh-order velocity-fifth order
pressure (Q7−Q5) discretization required 95 iterations.

For porous media flow there is a lot of work for Darcy
models, but less work on scalable algorithms for Stokes flow.
Typically meshing is prohibitively expensive or not scal-
able and a penalty formulation similar to ours (described
in §2.1.1) is used. A discussion on the need and impor-
tance of solvers for porous media flows can be found in [25]
which also uses a penalty formulation (with a finite volume
scheme).

1.3 Limitations
Our work is the first study of its kind and as such is not

comprehensive. We consider the formulation, analysis, con-
vergence tests and scalability studies only for the case of
variable density in free space. Here we are not considering
high-order accurate scheme for complex geometries, generic
boundary conditions, or variable viscosity problems. Also,
we are not considering the design of preconditioners for (2).
As we can see in Table (1), although the condition number
of (2) is mesh-independent, it does depend on the magni-
tude of the variable coefficients. We briefly comment on
preconditioning in §4.

2. METHODOLOGY AND ALGORITHMS
G kernel (Green’s) function
ω computational domain: [0, 1]3

Noct number of leaf octants
L maximum tree depth
m multipole order
q Chebyshev polynomial degree
εtree tolerance for adaptive refinement
Ncell = (q + 1)(q + 2)(q + 3)/2 degrees of freedom per leaf
Ndof = NoctNcell number of unknowns
p number of processes
T total solve time
εgmres GMRES residual
Niter GMRES iterations

Table 2 Basic notation used in the paper.

To explain our scheme we will consider the case with
free-space boundary conditions. Other boundary conditions,
for example Dirichlet, Neumann, or periodic can be imple-
mented using either the same free-space Green’s function by
tiling R3 or by using a problem-specific Green’s function [14].
We assume that ρ̃, µ̃, and f are compactly supported in
ω = [0, 1]3. We only consider the variable density case and
set µ = 1. Under these simplifications, (1) becomes

ρ0u+ ρ̃u−∆u+∇p = f, divu = 0.

To derive the integral equation we need to introduce the
Green’s function G(x, y). By construction, G(x, y) satisfies

ρ0G(x, y)−∆xG(x, y) +∇xGp(x, y) = δ(x− y),

div xG(x, y) = 0,
(3)

where Gp(x, y) is the corresponding pressure and δ is the
Dirac delta function. For a function f , the convolution of G
with f is denoted by G[f ]. For the free-space case and with
ρ0 = 0, G is given by [23]

G[f ](x) :=

∫
ω(y)

G(x−y)f(y) =

∫
ω(y)

1

8π

(
1

‖r‖2
+
rrT

‖r‖32

)
f(y),

where r = x − y. We also set ρ0 = 0 so that ρ = ρ̃. Then,
by taking the convolution of the momentum equation in (1)
with G, integrating by parts the G∆u and G∇p terms, and
using (3), we obtain

u(x) + G[ρu](x) = G[f ](x), ∀x ∈ ω. (4)

Equation (4) is the main equation we will be considering
here. The expressions forG and its gradient for the case with
variable viscosity or for the case with non-zero ρ0 are quite
cumbersome and beyond the scope of this paper. Nothing
changes in the formulation for those cases, but the case of
ρ0 6= 0 is computationally more expensive because G is not
scale invariant anymore.



As mentioned in the introduction, equation (4) is a second-
kind Fredholm integral equation. Thus, it has a bounded
condition number [18]. The size of the condition number
increases with increasing the norm of ρ.

2.1 Discretization
The numerical problem can be stated as follows: given

evaluator functions for ρ, f and a target accuracy, compute
an evaluator function for u.

To do this, we use a Galerkin scheme in which we represent
ρ, f and u in the same basis. This basis is constructed by
decomposing ω into a set of disjoint cells ωi (in our case the
leaf-octants of an octree partition ω). In each ωi, we approx-
imate ρ(x), u(x), and f(x) using Chebyshev polynomials of
degree q. We call this representation the Chebyshev tree
of a function. Using a Galerkin projection on (4), we obtain
a finite-dimensional algebraic system for the coefficients of
u at each ωi. This system is non-symmetric. We solve it
with unrestarted, unpreconditioned, Generalized Minimum
Residual method (GMRES). The evaluator function for u
will use the Chebyshev coefficients of u at each ωi. We re-
view these steps in detail below.

Building the Chebyshev tree. We partition ω to ωi
so that ρ and f are both resolved to a prespecified accuracy
in the Chebyshev space. Let’s consider the case for f . A
Chebyshev octree representation of f is a tree in which at
every leaf ωi, we represent f by its Chebyshev coefficients
f̂nm` so that

f(x) =

n+m+`≤q∑
n=0,m=0,`=0

f̂nm`Tnm`(x), x ∈ ωi,

where Tnm`(x) = Tn(x1)Tm(x2)T`(x3) and Tn is the n-th
degree Chebyshev polynomial. We proceed in a top-down
fashion. Recall that we are given an evaluator, which for
any x returns f(x). To construct the tree, we start at

the root level and we evaluate f̂ by sampling f at Cheby-
shev points and then taking a discrete Chebyshev trans-
form [26]. That is, we use Chebyshev quadrature to evalu-

ate f̂nm` =
∫
ωi
Tnm`f(x)w(x), where w(x) = (1 − x2)−1/2

is required for orthogonality. Then, we check the size of
the tails: if

∑
n+m+`=q |f̂nm`| ≤ ε we terminate the recur-

sion, otherwise we subdivide and continue recursively for
each child octant of the root. Once the tree is constructed,
we have a representation for f in terms of piecewise Cheby-
shev polynomials. If f is discontinuous we stop when we
reach a prespecified maximum tree level. Notice that we
are not using a tensor product basis. Instead we truncate
so that the highest degree of the polynomial is q. This re-
sults in Ncell coefficients per leaf octant (roughly (q + 2)3/2
instead of 3(q + 1)3).

Convolution with G. Once we have built the Cheby-
shev trees for ρ and f , we merge them to a single tree that
represents both functions accurately. Then, we must eval-
uate the action of G on Chebyshev tree functions. This is
the most expensive step in our method. Let us describe the
basic mathematical structure of computing u = G[f ], for
a given function f . This evaluation corresponds to solving
a constant-coefficient Stokes problem with right-hand side
equal to f . One key part in this convolution is the quadra-
ture. Since we also want to represent u(x) as a Chebyshev
polynomial, we need to evaluate u(x) at Chebyshev quadra-
ture nodes at each leaf octant. (If we need u(x) at arbitrary
target locations, we can use Chebyshev interpolation as a

post-processing step.) The number of evaluation points, for
each source octant is equal to Ndof and thus it is excep-
tionally expensive. Instead, we compute near-field integrals
exactly and approximate far field integrals. By near-field
integrals we mean integrals in which the source and target
octants share a face, edge, or vertex. All other integrals are
marked as far-field.

If we were to use a uniform tree with tensor product poly-
nomials for the near-field integrals, we would need to pre-
compute 243(q + 1)6 integrals per level. For a 15-order ap-
proximation, we would need roughly 20gb per level, which
is not practical. What makes the calculation possible is the
invariance properties of the kernel G. For most problems
this kernel is (up to a scalar prefactor) scale and rotation-
ally invariant. By avoiding the tensor product polynomial
basis and using the symmetry properties of the kernel, we
can reduce the storage to 4N2

cell (roughly (q+ 2)6, or 128mb
for q = 14). If the Green’s function is not scale invariant
we need to precompute near field interactions for every level
that has leaf octants.

B

If the tree is non-uniform, the sit-
uation is more complex because we
need to precompute integrals for every
level combination and directionality of
source and target octant pairs. For ex-
ample, see the inset figure in which B is
the target box. Every color represents
interactions at a different level. Unlike

particle FMM where the matrix entries are simple kernel
evaluations, now the entries are singular or near-singular
integrals which cannot be computed on the fly. We need to
restrict the possible combinations. For this reason we use
2:1 balancing in which we create additional octants to sat-
isfy the following requirement for the tree: the level of two
octants that share a vertex, edge, or face can differ by no
more than one.

Volume FMM: The evaluation of G is done with a vol-
ume FMM. Similar to particle FMM codes [11], the basic
idea behind volume FMM is to construct a hierarchical de-
composition of the computational domain using an octree.
Then, the solution at each point x can be evaluated by sum-
ming over contributions from all octants in the octree. This
summation is split into near and far interactions:

u(x) =
∑

ωi∈Near(x)

∫
ωi

G(x−y)f(y)+
∑

ωi∈Far(x)

∫
ωi

G(x−y)f(y)

As mentioned the near interactions (from ωi ∈ Near(x)) are
computed through direct integration. The far interactions
(from B ∈ Far(x)) are low-rank and can be approximated
either using analytic expansions or source equivalent repre-
sentations. We use the kernel-independent scheme [27] to
approximate the far interactions. The only difference from
particle FMM is that the source to equivalent interactions
are precomputed since f (the source) is sampled at Cheby-
shev grid which is the same for every octant (up to trans-
lations and scalings). Similar modifications are required for
the X-list and W-list in FMM terminology. More details
about integrating volume potentials with FMM can be found
in [22] and details on performance optimizations in §2.3.

Evaluating G[ρu]. We assume that we have an evaluator
for ρ(x) and Ncell Chebyshev coefficients per octant for u.
To evaluate the convolution of their product, we first eval-
uate u at the (q + 1)3 Chebyshev points at every octant,



we multiply the values pointwise to get ρ(xk)u(xk) at the
Chebyshev points, we take their Chebyshev transform to
compute the Chebyshev coefficients of ρ(x)u(x) and then,
we apply G as described above. To compute ρu, we pad
the reduced Chebyshev polynomial basis, and then we use
tensor-product transformations with O(q4) complexity. The
savings are not significant, since the integrals already require
O(q6) calculations.

Overall scheme: The overall scheme can be summarized
as follows

• Create a Chebyshev tree based on approximating f
and ρ to a desired accuracy. The resulting tree has
Noct octants.
• Evaluate G[f ].
• Solve (4) using GMRES, in which for each mat-vec

we use the quadrature rules and FMM acceleration
described above.

If ρ or f are discontinuous, the tails do not decay. For this
reason we always specify a maximum depth that corresponds
to the minimum octant size allowed in our approximation.

To summarize, let PN be the projection operator that re-
stricts f , u and ρ, to the space spanned by Ndof polynomials.
Then the discretized system can be written as

uN + GN [ρuN ] = GN [f ], (5)

where GN [·] = PNG[PN ·] denotes the discretization of G us-
ing the quadrature scheme we described. Notice the degrees
of freedom depend on q but for notational simplicity we sup-
press this dependence. We remark again that this linear
system is not symmetric, unlike the original Stokes prob-
lem. (Many FEM-based solvers also use GMRES to allow
for optimal preconditioning [6].)

Error analysis: We follow standard error analysis for
projection methods for second kind operators [18]. Let uN
to be the solution of (4). Then the overall error can be
estimated by

‖uN − u‖ = O(‖PNu− u‖+ ‖GN − PNG‖+ ‖PNf − f‖),

in the L2 norm. The constant in the estimate is propor-
tional to the norm of G, which in turn depends on ‖ρ‖. The
first term is the approximation error due to the projection,
the second term is error due to quadratures (related to the
smoothness of ρ) and FMM, and the last term is the approx-
imation error of f .

Assuming standard regularity, i.e., ρ(x) ∈ L∞ and f ∈
L2, then u ∈ H2. If ρ and f are in C∞ the convergence
is of order q. Otherwise the convergence depends on the
regularity of u (in our assumptions at least C1) and ρ (due
to the quadrature error). For constant coefficients ρ = 0
and the middle term drops. Then the error in u becomes
directly proportional to the error in f .

2.1.1 Formulation for the porous medium flow
Let ξ(x) be the characteristic function of the fluid phase

and 1 − ξ(x) the characteristic function of the solid phase.
Then (4) is satisfied in the fluid phase and u = 0 in the
solid phase. For regular pore geometries the right approach
is to use a double-layer potential formulation using bound-
ary integral equations. But for complex geometries like the
one in Figure 1, constructing surface meshes can be compli-
cated and expensive due to the scalability of meshing and
constructing multilevel preconditioners. When engineering

accuracy are acceptable (say 1% error), one can approxi-
mate the solution using a penalty formulation. This is a
classical approach similar to fictitious domain methods, im-
mersed boundary methods, embedded methods and others.
To force the fluid to have zero velocity we use a volume
penalty method in which ρ(x) = η(1− ξ(x)), where η is the
penalty parameter. This can easily be derived by a con-
strained variational formulation of the Stokes equations in
which u(x) = 0 for ξ(x) = 0. With this approximation, the
formulation becomes

η(1− ξ(x))u(x)−∆u+∇p = f, divu = 0,

and its volume integral formulation becomes

u(x) + ηG[(1− ξ)u] = G[f ]. (6)

The theoretical analysis of the scheme for Stokes equations
can be found in [1]. Let us denote the solution of (6) as
uη and u∗ be the exact solution. It can be shown that uη
converges to u∗ as η goes to infinity, in the L2 norm. If the
solution u is regular (in the true domain), the convergence
rate is expected to be O(1/η). If the solution is not regular

the convergence rate can deteriorate to 1/η1/a, with a =
2 or even a = 4. Let us remark that the use of penalty
formulations for porous media is not new, for example it
has been used in [25].

2.2 Convergence
To demonstrate the convergence of the scheme, we con-

sider three problems with analytic solutions. The first two
test cases correspond to C∞ velocity fields. For the third
test the solution is in H2. We consider convergence as a
function of the polynomial degree q, the GMRES tolerance,
the discretization error εtree = ‖PNf − f‖ and the order of
multipole expansions m. All the reported times here are for
single-core of x86 only code compiled with the same compiler
(Intel) with O2 flag.

In the first test, we consider a constant-coefficient case
with ρ = 0 and study the convergence of the method as we
decrease the tree-refinement tolerance εtree and correspond-
ingly choose the best Chebyshev degree q and multipole or-
der m for the fastest time to solution for a given accuracy.
The velocity is given by u(x) = exp(−125|x|2)(x3e2−x2e3),
where e2 and e3 are orthogonal unit vectors. We report the
L∞ and L2 errors in the velocity field and the total time to
solution in Table 3.

εtree q m Noct Ndof L∞ L2 T
1e-1 8 2 8 4.0e+3 1.3e-1 2.1e-1 0.004
1e-2 10 4 64 5.5e+4 6.1e-3 5.6e-3 0.102
1e-3 12 6 120 1.6e+5 3.0e-5 6.7e-5 0.656
1e-4 14 8 120 2.4e+5 8.2e-7 1.9e-6 1.54
1e-5 15 10 120 2.9e+5 2.3e-7 3.2e-7 2.53

Table 3 Convergence for constant-coefficient Stokes flow with de-
creasing tree refinement tolerance εtree and increasing multipole or-
der m; L2 and L∞ are the relative errors of the velocity;T is the
solve time (single-core run).

Notice that the number of octants does not change signifi-
cantly but the error in the solution quickly reduces. We need
just 120 octants with about 300K unknowns (three velocities
per grid point) to reach single precision.



Noct Ndof L∞ L2 T
1,408 43,508 1.9e-4 1.7e-4 0.48
4,544 135,360 2.7e-5 3.2e-5 2.47
10,368 298,972 1.4e-5 1.2e-5 6.08
20,224 579,152 3.6e-6 4.4e-6 14.9

Table 4 Convergence for constant-coefficient Stokes flow using
Q2 − Q1 Taylor-Hood elements with Deal.II. We report L2 and
L∞ relative errors of the velocity and the overall wall-clock time
T (excluding setup) with increasing number of unknowns. We con-
verged GMRES to 1e-6 relative residual reduction. The number of
GMRES iterations is mesh independent (about 20).

To put this calculation in perspective, we solved the same
problem with Deal.II [3, 4] a state-of-the-art, finite ele-
ment package that is part of the SPEC CPU 2006 bench-
mark. We used non-uniform discretization with hexahedral
elements for both velocities and pressures (with q = 2 for
velocities and q = 1 for pressure). We use a preconditioned
GMRES solver. The preconditioner is block diagonal, also
known as field-split preconditioning [19]. It uses one block
for the viscosity based on algebraic multigrid library [15]
with one V-cycle with one step of Chebyshev smoothing. It
also uses a mass preconditioner for the pressure Schur com-
plement. The convergence rates are reported in Table 4.
These timings do not include setup times. For the integral
equation formulation, the setup cost is a small percentage
of the constant-coefficient solve (less than 10%) and negligi-
ble for variable coefficient problems. For the FEM code the
setup cost (mostly building the multigrid operators) can be
substantial.

Comparing the pointwise L∞ errors, we observe that for
five digits of relative accuracy, the finite element scheme re-
quires 135K unknowns (second row) and the integral equa-
tion requires 160K unknowns (third row). Both schemes
are quite fast, with our formulation being somewhat faster
since it requires just a single evaluation of G with FMM. For
six digits of accuracy and higher, the integral equation re-
quires less than 300K and less than three seconds. The FEM
scheme requires 580K unknowns and 14.9 seconds becoming
4-5× slower than the integral equation solver. Of course, an
FEM-based Stokes solver—and Deal.II in particular, are
much more general in terms of arbitrary geometries, bound-
ary conditions and multiphysics couplings.

The second test case is the exact smooth solution for
the case in which ρ(x) is a scaled Gaussian. We report the

εtree ‖ρ‖∞ Noct εgmres Niter L∞ L2 T
1e-1 1e+5 64 1e-3 5 8.3e-3 1.5e-2 3.91
1e-2 1e+5 120 1e-4 6 5.7e-4 7.0e-4 12.4
1e-3 1e+5 176 1e-7 14 4.6e-7 8.4e-7 45.4
1e-6 1e+5 736 1e-8 17 6.8e-8 1.9e-7 229
1e-1 1e+7 64 1e-4 12 2.2e-2 5.0e-2 9.45
1e-2 1e+7 120 1e-7 61 2.3e-4 3.4e-4 127
1e-3 1e+7 176 1e-9 103 7.6e-7 1.9e-6 337
1e-1 1e+9 64 1e-4 12 2.3e-2 5.5e-2 9.44
1e-2 1e+9 120 1e-7 82 6.2e-4 2.4e-3 171
1e-3 1e+9 176 1e-9 246 1.9e-5 1.6e-4 818

Table 5 Convergence for a variable-coefficient Stokes flow, with re-
ducing tree refinement tolerance εtree and GMRES tolerance εgmres

for different values of ρ. Chebyshev degree q = 14, multipole order
m = 10; T is the overall time in seconds on a single x86 core.

number of iterations and time to solution. For fixed ρ, the
number of iterations increases with increasing mesh size be-
cause we tighten the GMRES tolerance as we refine. The de-
pendence of the GMRES iterations on large variations of ρ is

mild up to fiver orders of magnitude variations. We observe
fast convergence but the conditioning deteriorates with in-
creasing ‖ρ‖∞. For four digits of relative accuracy pointwise,
the number of GMRES iterations is six for ‖ρ‖∞ = 1E5. For
higher ‖ρ‖∞, we need tighter GMRES residuals due to the
deterioration of conditioning and the number of iterations
jumps to 100s of iterations. Although the timings are not
bad (just 13 minutes on a single core for the most expen-
sive run), for large variations of ρ preconditioning should be
used.

In the third test case, we consider a problem with dis-
continuous ρ. We consider Stokes flow around a sphere for
which we have an analytic solution. The solution in the ex-
terior of the sphere is smooth but if we extend the velocity
by zero inside the sphere, its derivatives are discontinuous
at the boundary of the sphere. We approximate the solution
of this problem using the penalty formulation and solving in
the whole domain. For convergence, we must increase η

‖ρ‖∞ L Noct εgmres Niter L∞ L2 T
2.5e+5 1 1 4.0e-6 4 2.6e-1 2.4e-1 0.1
5.0e+5 2 8 2.0e-6 29 1.7e-1 8.9e-2 1.2
1.0e+6 3 64 1.0e-6 36 1.2e-1 4.8e-2 4.9
2.0e+6 4 120 5.0e-7 43 4.6e-2 6.8e-3 17
4.0e+6 5 512 2.5e-7 44 2.0e-2 8.8e-4 43

Table 6 Convergence for Stokes flow around a sphere of ra-
dius=0.15 (variable and discontinuous coefficients) in Ω = [0, 1]3;
the Chebyshev degree q = 14, multipole order m = 10 with decreas-
ing GMRES residual εgmres and increasing penalty ‖ρ‖∞ and tree
refinement level L. Again T is the total time in seconds on 16 x86
cores.

q m Noct Niter L∞ T
14 10 1, 856 45 1.4e-2 140
14 6 1, 856 45 1.4e-2 89
6 6 5, 328 45 1.0e-2 38
4 6 5, 328 53 1.4e-2 35
2 6 20, 952 46 1.2e-2 103

Table 7 Single node performance results for flow around a sphere
(test case three, non-smooth solution) with fixed accuracy and dif-
ferent Chebyshev degrees q, multipole orders m. Here we exam-
ine the effect of using a high order discretization for a non-smooth
problem. The timings are on a single node using 16 threads.

as we refine and the problem becomes increasingly ill con-
ditioned. Notice that we do not advocate using our method
for this particular problem. Boundary integrals should be
used instead. We just use it to illustrate the convergence
rate of our scheme in this setting. The L2 and L∞ errors
are measured on the exterior of the sphere only.

Also in Table 7, we examine the cost for different element
orders. We keep the target accuracy tolerance fixed ( 1%
error) and we vary the polynomial order q and the FMM far-
field accuracy m. In all of these examples, we set the penalty
parameter to η = 1e+7. As we expected, higher-order ele-
ments will not help with the convergence rate but they can
help with the constants by allowing faster convergence away
from the discontinuity. From this table we observe that us-
ing high order approximation (high q and high m) increases
the cost significantly and should not be used. The cases of
q = 6 and q = 4 give similar timings. Next we give more
details on performance optimizations and on our strategy of
integrating our scheme with co-processor acceleration.



2.3 Performance optimizations
Accelerations on the FMM: In the following section

we overview optimizations that we have made in our algo-
rithm. These result in significantly improved performance
and scalability.

2.3.1 Interactions and Octree Traversal
We define a source and a target octant to be well sepa-

rated (or far) if they are at the same depth in the octree
and are not adjacent. To compute far interactions we use
two building blocks: multipole expansions and local expan-
sions. The multipole expansion approximates the potential
of an octant far away from it. The local expansion ap-
proximates the potential within an octant due to sources
far away from it. The interactions are then approximated
by computing a multipole expansion (source-to-multipole,
multipole-to-multipole) for the source octant, multipole-to-
local (V-list) translation and then evaluating the local ex-
pansion (local-to-local, local-to-target) at the target octant.
We use the kernel-independent variant of FMM in our imple-
mentation. The form of the multipole and local expansions
and the V-list translation operator for this variant are dis-
cussed in detail in [27].

Optimizations for near interactions: For particle FMM
codes, it is typical to compute the near interactions by loop-
ing over every leaf octant, and then collecting its neighbors
and computing the interactions. This calculation is com-
pute bound. However, we found that this approach can be
further improved by taking into account the structure of G.
Instead of looping over leaf octants, we compute all the near
interactions as follows. We loop over interaction directions
(north, south, west, east, and the diagonals for a total of
27) and for each interaction direction, we collect all source
vectors for each source-target interaction pair in that direc-
tion. We then compute all interactions in that direction at
once through a single DGEMM. For uniform trees the size
of DGEMM is (Ncell×Ncell)× (Ncell×Noct), thus achieving
excellent performance. Furthermore, several interactions are
related through a spatial symmetry transform (rotation of
coordinates) and this allows us to perform interactions along
several directions at once. This is crucial for execution on
accelerators, since they require the matrices to be large to
achieve good performance. However, to do this we need
to perform permutation operations on the source and target
vectors; for this, we implemented hand vectorized and highly
efficient kernels for CPU and co-processors (Phi, GPU).

Optimizations for far interactions: Similarly, as with
the near interactions, we have re-organized the far interac-
tions, also known as V-list. This is an expensive calculation,
which, in its standard form is memory-bound. For every tar-
get octant (leaf or non-leaf), we have to visit 189 octants (its
V-list) and perform a Hadamard vector product. We mod-
ify the algorithm and introduce blocking in which, instead
of performing pairwise interactions, we perform interactions
between blocks of eight octants at a time. This allows us to
use vector-level parallelism by computing 8×8 matrix-vector
products. We also block V-list interactions to use the spatial
locality of V-list interactions i.e. the fact that neighboring
octants share the same V-list octants. By doing so we make
better utilization of the L1 and L2 cache. This blocking in-
creases the performance by an order of magnitude. Details
can be found in [22].

2.3.2 Parallel Fast Multipole Method
Here we summarize the important features of the intra-

node parallelism (accelerators, multithreading and vector-
ization) and distributed memory parallelism. A detailed
discussion of these optimizations is beyond the scope of this
paper. We refer the interested readers to [22] for a detailed
discussion of these concepts.

Asynchronous Execution on Co-processor: We compute
U,W,X-list interactions on the co-processor and the remain-
ing interactions (V-list, L2L and L2T) on the CPU. All com-
putations and memory transfers between the co-processor
and the host are asynchronous and overlapped with compu-
tation on CPU.

U,W,X-List Optimizations: We group similar interactions,
those with the same interaction matrix or related by a spa-
tial symmetry relation into a single matrix-matrix product,
evaluated efficiently through DGEMM.

V-List Optimizations: The V-list interactions involve com-
putation of the Hadamard products, which has low compu-
tational intensity and is therefore bandwidth bound. We
rearrange data and use spatial locality of V-list interactions
to optimize cache utilization. This along with use of AVX
and SSE vector intrinsics and OpenMP allowed us to achieve
over 50% of peak performance for this operation on the Intel
Sandy Bridge architecture.

Distributed 2:1 Balance Refinement: We developed a new
distributed memory algorithm for 2:1 balance refinement,
which is more robust for highly non-uniform octrees than
our earlier implementation.

Distributed Memory Parallelism: We use Morton ordering
to partition octants across processors during the tree con-
struction. In the FMM evaluation, after the upward pass, we
need to construct the local essential tree through a reduce-
broadcast communication operation. For this, we use the
hypercube communication scheme of [21].

2.3.3 Complexity
The cost of FMM evaluation is given by the number of

interactions between the octree nodes weighted by the cost of
each interaction. The cost of each interaction depends on the
multipole order m and the degree of Chebyshev polynomials
q. Let Noct be the local octree nodes, Nleaf the number of
local leaf nodes. Also, let NU , NV , NW , NX(= NW ) denote
the number of interactions of each type U,V,W and X-list
respectively. The overall cost is summarized in Table 8.

Interaction Type Computational Cost

S2M, L2T O(Nleaf × q3 ×m2)
M2M, L2L O(Noct ×m2 ×m2)
W-list, X-list O(NW ×m2 × q3)
U-list O(NU × q3 × q3)
V-list O(NV ×m3 +Noct ×m3 logm)

Table 8 Computational cost for each interaction type.

The communication cost for the hypercube communica-
tion scheme is discussed in detail in [21]. For an uncongested
network, that work provides a worst case complexity which
scales as O(Ns(q

3 + m2)
√
p), where Ns is the maximum

number of shared octants per processor. However, assuming
that the messages are evenly distributed across processors
in every stage of the hypercube communication process, we
get a cost of O(Ns(q

3 +m2) log p). In our experiments with
uniform octrees, the observed complexity agrees with this



estimate. Also, since shared octants are near the boundary
of the processor domains, we have Ns ∼ (Noct/p)

2/3, where
Noct is total number of octants.

In the uniform octree case, there are Noct = Ndof/q
3 total

octants, NU = 27Noct and NV = 189Noct. Due to the large
constant factors, the cost of U-list and V-list interactions
dominate over other interactions and the overall cost is:

TFMM = O
(
q3
Ndof

p

)
+O

(
m3

q3
Ndof

p

)
+O

((
Ndof

p

)2/3

q log p

)
.

For tree construction, isO(q4) per octants andO(qNdof/p)
overall (excluding cost of redistributing octants which is
data dependent). For the 2:1 balance refinement the cost is
O
(
qNdof/p+ (Ndof logNdof)/(pq

3)
)
, assuming a hypercube

interconnect. These are setup costs.

3. PERFORMANCE ANALYSIS
In this section, we analyze the performance of our im-

plementation. Below, we briefly describe the experimental
setup used in this work.

Hardware. All experiments were performed on the Stam-
pede (TACC) supercomputer, a Linux cluster consisting of
6,400 compute nodes connected by 56gb/s FDR Mellanox
InfiniBand network in a fat tree configuration. Each com-
pute node has dual eight-core Intel Xeon E5-2680 CPUs run-
ning at 2.7 GHz and 32gb of memory. In addition, most
nodes have an Intel Xeon Phi SE10P co-processor, while
a few have an NVIDIA K20 GPU co-processor. In §3.1,
we give a comparison of the single-node performance of our
solver for the three configurations: CPU only, CPU+Phi
and CPU+GPU. The system has a theoretical peak per-
formance of 1.42tflops per node (345.5gflops for CPU
and 1.07tflops for Phi) and about 9pflops for the entire
system. Of this, Stampede achieved 5.2pflops with 6,006
compute nodes on the Linpack benchmark.

Software. We use the Intel compiler version 13.1.0 along
with Intel MPI Library 4.1 for Linux to compile our code.
We use PETSc-3.4.3, FFTW3/3.3.2 and Intel MKL-11.0.1
libraries for the BLAS operations and NVIDIA CudaBLAS
for the GPU version. Our code was compiled with -O2 op-
timization level.

3.1 Single Node Performance
In this section we present runtime and performance (in

gflops) on a single node of Stampede. We use the smooth
variable coefficient test case with ρ(x) = 106 exp(−500x2).
In Table 9, we show results for both uniform and adaptive
meshes. We vary the discretization order q for a fixed so-
lution accuracy of about 1e-6. With higher order approxi-
mation, we require significantly fewer octree nodes and con-
sequently solve the problem faster. We achieve a speedup
of 2.7× and 3.1× on CPU for the uniform and adaptive
cases respectively by increasing q from 8 to 16. Further-
more, using adaptive mesh requires an order of magnitude
fewer unknowns and is about 10× faster for the same q. We
can also use either an Intel Phi or NVIDIA GPU to acceler-
ate the near interactions. For low-order discretization, since
there is not enough work in near interactions, we do not see
a significant advantage in using co-processors. However, for
q = 16, we see 2.5× and 2.7− 4.0× speedups for CPU+Phi
and CPU+GPU cases respectively, with GPUs giving signif-
icantly better performance even for small problems with just
232 octants. Overall, we have over 100× speedup going from

low-order CPU case to high-order, adaptive CPU+GPU case
and achieve 579gflops or about 40% of the theoretical peak
performance of the compute node.

3.2 Weak Scalability
We now present some isogranular or weak scalability re-

sults on Stampede. In Figure 4 and Table 10, we present re-
sults for a low-order case with discretization order q = 6 and
multipole order m = 6. We solve for flow around a distribu-
tion of 250 spheres each of radius 5e-2 in a unit cube. The
configuration is similar to that visualized in Figure 3. We
use the penalty method with η = 1e+9 inside the spheres
and zero outside. We adaptively refine our mesh on the
boundary of the spheres and the problem size is determined
by the maximum refinement level L. Here, we vary L from 5
to 10 and increase the number of compute nodes while keep-
ing the number of unknowns per processor (Ndof/p) fixed at
roughly one million. In Figure 4, we present a breakdown of
the time spent in each stage of the solver. Of the total solve
time, GMRES corresponds to the time spent internally in
the PETSc’s Krylov subspace iterative solver. In each it-
eration of GMRES, a matrix multiplication operation (the
LHS in equation 5), labeled as MatMul, is performed. In
this operation, the convolution with the Green’s function
is implemented using our volume FMM and we show the
time spent in computation (FMMcomp) and communication
(FMMcomm). We show results for execution on CPU and
CPU+Phi as we increase the number of compute nodes from
1 to 2048. We observe that the FMM accounts for over 60%
of the total solve time. As expected, the FMM computation
stage is about 15% faster with the co-processor than without
it. The communication cost of FMM increases gradually as
we increase the number of MPI processes. This trend ap-
pears to be consistent with the expected O(log p) complex-
ity estimate. For very large process counts, the scalability of
GMRES appears to suffer and there is a significant increase
in the time spent in this stage for 2048 compute nodes. In
Table 10, we show performance results for CPU+Phi case.
Overall the code scales well and on 2048 compute nodes we
achieve 150tflops with 61% parallel efficiency η. We lose
some performance due to communication overhead and in-
crease in time spent in the GMRES stage.

In Figure 5 and Table 11 we solve for Stokes flow using
the geometry visualized in Figure 1. Since we examined the
behavior of the solver in the case of low-order approxima-
tions above, here we consider the case with of high-order
approximations. Here we have used a high-order discretiza-
tion with q = 14 and multipole order m = 10. In this
test case, we see significant speedup (∼ 2×) using the Phi
co-processor since we have enough work in the near inter-
actions. Consequently, we also get significantly higher flop
rates, achieving 286tflops on 1024 compute nodes and a
parallel efficiency η = 0.79. Again the number of GMRES
iterations is significant due the large ‖ρ‖∞.

3.3 Strong Scalability
We report strong scalability results where we fix the prob-

lem size and increase the number of compute nodes. In
Figure 6 and Table 12, we simulate flow around a random
distribution of 250 spheres using high-order discretization
(q = 14, m = 10) and with an adaptive mesh refined to 7
levels corresponding to 232 million unknowns. We solved
GMRES to a residual tolerance εgmres = 1e-8 and the solve
required 101 iterations. As we increase the number of com-



CPU CPU+Phi CPU+GPU
q Noct L Niter L∞ L2 Tsolve gflops Tsolve gflops Tsolve gflops
8 32, 768 6 48 3.1e-6 1.0e-6 1026.4 148 940.0 162 942.9 161

10 32, 768 6 46 1.0e-7 3.0e-7 1157.9 161 963.3 194 952.1 196
12 4, 096 5 49 3.2e-6 1.4e-6 183.5 184 129.3 262 123.9 273
14 4, 096 5 47 1.7e-7 3.1e-7 259.3 210 138.0 394 128.5 424
16 4, 096 5 46 8.3e-8 3.1e-7 384.3 242 159.5 582 140.2 662
6 29, 240 9 41 4.8e-7 4.0e-7 722.6 148 681.0 157 669.1 159
8 4, 656 8 41 6.6e-7 6.7e-7 118.8 160 101.0 188 97.4 195

10 2, 024 7 41 2.5e-7 3.5e-7 66.9 166 44.3 251 42.4 262
12 1, 240 6 44 1.1e-7 3.1e-7 63.4 179 31.4 360 30.3 374
14 736 6 42 9.2e-8 3.0e-7 56.4 192 23.2 467 19.1 565
16 232 5 41 1.5e-7 3.2e-7 38.8 147 15.6 366 9.8 579

Table 9 Single node performance results for a variable coefficient problem (‖ρ‖∞ = 1e+6) for uniform and non-uniform meshes with
increasing Chebyshev degree q and fixed multipole order m = 10, GMRES tolerance εgmres = 1e-9. This example demonstrates two orders of
magnitude speed-up from a 9th-order, uniform grid approximation, to a 17th-order GPU-accelarated, adaptive scheme reducing 1026 seconds
to 9.8 seconds.

Figure 3 Here, we solve Stokes flow around a random distribution of spheres. On the left we visualize the streamlines around the spheres.
The figure on the right shows cross sections of the magnitude of the velocity field with velocity field increasing from green to red.

pute nodes from 32 to 1024, we get 9× and 7× speedup for
the CPU and CPU+Phi respectively. Overall, we achieve
94.8tflops and a parallel efficiency of 22%.

Next, in Figure 7 and Table 13, we use the porous medium
geometry as a test case and use low order discretization for
the solver. The octree is refined to 8 levels and we have
169 million unknowns. Due to the low-order discretization,
we gain little from using the Phi accelerator and get about
24tflops for both CPU and CPU+Phi on 1024 compute
nodes. Scaling from 32 compute nodes to 1024 compute
nodes, we get similar parallel efficiency as before.

4. CONCLUSIONS
We have presented a novel scheme for solving the Stokes

equations with variable coefficients. We demonstrated the
convergence of our scheme and its efficiency for constant and
variable coefficients and showed scalability on hybrid archi-
tectures. For smooth problems, we demonstrated that the
combination of high-order accuracy, adaptivity, integration
with accelerators, algorithmic optimality, and distributed
memory parallelism can result in many orders of magnitude
speedups.

Here we have only scratched the surface of the capabilities
and challenges of the proposed methodologies. There remain
challenges in terms of performance, preconditioners, general
geometries, and of course careful verification for porous me-
dia flows.

For more general geometries and boundary conditions, one
can use block solvers as we discussed before. The transfor-
mation Jacobian from an arbitrary hexahedral domain to

the unit cube, can be easily handled by our variable coef-
ficient solver. As long the number of hexahedral elements
is reasonably small and the elements are well shaped (for
example in the absence of large anisotropy), we can handle
non-cubic geometries by using ideas similar to macromesh
construction codes [8], overset grids and other similar ideas.

Another issue that we do not discussed here is the need
for preconditioning. We saw an increase in the number of
iterations as ρ∞ increases significantly. Many algorithms for
preconditioning integral equations exist but none has been
scaled to such complexity. Promising schemes include mul-
tilevel solvers and hierarchical inexact factorizations. These
aspects are currently being investigated in our group.

There are several other issues regarding performance. When
the average ρ0 is not zero, the Green’s function is not scale
invariant. This means that the precomputed matrices for
near interactions will depend on the level of the source leaf
octant. This will increase the storage requirements and
reduce performance. Variability on the viscosity does not
cause any problems.

Finally, although we get excellent performance for high
values of q, this is not the case with reducing q. The per-
formance we observe is still quite good compared to FEM
codes but more work is needed to ensure a more robust per-
formance envelope.

Overall, our scheme provides an excellent starting point
that resolves several outstanding issues: scalability with re-
spect high-order elements, more freedom in using discretiza-
tion spaces, and excellent utilization of massively parallel
hybrid architectures.
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Figure 4 Weak scalability results for low-order discretization (q = 6, m = 6) show-
ing a breakdown of time in seconds for different stages of the solver for CPU and
CPU+Phi runs respectively. We solve for flow around a random distribution of 250
spheres.

p Ndof/p Niter Tsolve tflops η
1 9.8e+5 200 115.0 0.12 1.00
6 9.5e+5 163 115.2 0.62 0.86

27 1.0e+6 116 82.5 3.12 0.96
125 1.0e+6 99 77.6 13.0 0.87
508 1.1e+6 92 84.2 47.9 0.78

2048 1.1e+6 90 108.5 150 0.61

Table 10 Solve time, total flop rate and parallel effi-
ciency of the solver for flow around 250 spheres, for weak
scaling up to 2K compute nodes on Stampede using Phi
co-processor.
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Figure 5 Weak scalability results for high-order discretization (q = 14, m = 10) for
flow through a porous media. We show breakdown of time in seconds for different
stages of the solver for CPU and CPU+Phi runs respectively.

p Ndof/p Niter Tsolve tflops η
1 8.4e+6 158 518 0.35 1.00
9 6.0e+6 128 349 3.12 0.98

47 6.1e+6 124 363 16.6 1.00
227 6.1e+6 115 387 73.4 0.91

1024 6.1e+6 111 442 286 0.79

Table 11 Solve time, total flop rate and parallel effi-
ciency of the solver for flow through a porous structure,
for weak scaling up to 1K compute nodes on Stampede
using Phi co-processor.
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Figure 6 Strong scalability up to 1024 compute nodes using high-order discretization
(q = 14, m = 10) for flow around spheres for 232 million unknowns. We report
breakdown of time in seconds for different stages of the solver for CPU and CPU+Phi
runs respectively.

CPU CPU+Phi
p Tsolve tflops η Tsolve tflops η

32 676 6.11 1.00 326 12.7 1.00
64 377 11.0 0.90 179 23.1 0.91

128 210 19.8 0.81 97 42.7 0.84
256 133 31.4 0.63 65 64.9 0.63
512 95 44.6 0.44 57 74.6 0.36

1024 73 60.0 0.29 46 94.8 0.22

Table 12 Solve time, total flop rate and parallel effi-
ciency of the solver for flow over 250 spheres, for strong
scaling up to 1K compute nodes on Stampede.
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Figure 7 Strong scalability using low-order discretization (q = 6, m = 6) for flow
through a porous medium using 169 million unknowns. We report breakdown of time
in seconds for different stages of the solver for CPU and CPU+Phi runs respectively.

CPU CPU+Phi
p Tsolve tflops η Tsolve tflops η

32 841 3.0 1.00 778 3.2 1.00
64 414 6.1 1.02 351 7.2 1.11

128 255 9.9 0.83 216 11.7 0.91
256 140 18.1 0.76 122 20.9 0.81
512 142 18.1 0.38 112 22.9 0.44

1024 109 24.0 0.25 113 23.1 0.22

Table 13 Solve time, total flop rate and parallel effi-
ciency of the solver for flow through a porous media, for
strong scaling up to 1K compute nodes on Stampede.
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