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Abstract—Transformer based models, like BERT and
RoBERTa, have achieved state-of-the-art results in many
Natural Language Processing tasks. However, their mem-
ory footprint, inference latency, and power consumption
are prohibitive for efficient inference at the edge, and even
at the data center. While quantization can be a viable
solution for this, previous work on quantizing Transformer
based models use floating-point arithmetic during infer-
ence, which cannot efficiently utilize integer-only logical
units such as the recent Turing Tensor Cores, or traditional
integer-only ARM processors. In this work, we propose I-
BERT, a novel quantization scheme for Transformer based
models that quantizes the entire inference with integer-only
arithmetic. Based on lightweight integer-only approxima-
tion methods for nonlinear operations, e.g., GELU, Soft-
max, and Layer Normalization, I-BERT performs an end-
to-end integer-only BERT inference without any floating
point calculation. We evaluate our approach on GLUE
downstream tasks using RoBERTa-Base/Large. We show
that for both cases, I-BERT achieves similar (and slightly
higher) accuracy as compared to the full-precision baseline.
Furthermore, our preliminary implementation of I-BERT
shows a speedup of 2.4−4.0× for INT8 inference on a
T4 GPU system as compared to FP32 inference. The
framework has been developed in PyTorch and has been
open-sourced [1].

I. INTRODUCTION

The recent Transformer based language Neural Net-
work (NN) models [78], pre-trained from large unlabeled
data (e.g., BERT [16], RoBERTa [46], and the GPT
family [6, 57, 58]), have achieved a significant accuracy
improvement when fine-tuned on a wide range of Natural
Language Processing (NLP) tasks such as sentence clas-
sification [79] and question answering [61]. Despite the
state-of-the-art results in various NLP tasks, pre-trained
Transformer models are generally orders of magnitude
larger than prior models. For example, the BERT-Large
model [16] contains 340M parameters. Much larger trans-
former models have been introduced in the past few years,
with even more parameters [6, 42, 58, 59, 64, 69, 88].
Efficient deployment of these models has become a major
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challenge, even in data centers, due to limited resources
(energy, memory footprint, and compute) and the need
for real-time inference. Obviously, these challenges are
greater for edge devices, where the compute and energy
resources are more constrained.

One promising method to tackle this challenge is
quantization [19, 34, 37, 85, 86, 92], a procedure which
compresses NN models into smaller size by representing
parameters and/or activations with low bit precision,
e.g., 8-bit integer (INT8) instead of 32-bit floating
point (FP32). Quantization reduces memory footprint
by storing parameters/activations in low precision. With
the recent integer-only quantization methods, one can
also benefit from faster inference speed by using low
precision integer multiplication and accumulation, in-
stead of floating point arithmetic. However, previous
quantization schemes for Transformer based models use
simulated quantization (aka fake quantization), where all
or part of operations in the inference (e.g., GELU [28],
Softmax, and Layer Normalization [3]) are carried out
with floating point arithmetic [5, 68, 91]. This approach
has multiple drawbacks for deployment in real edge
application scenarios. Most importantly, the resulting
NN models cannot be deployed on neural accelerators or
popular edge processors that do not support floating point
arithmetic. For instance, the recent server class of Turing
Tensor Cores have added high throughput integer logic
that are faster than single/half-precision. Similarly, some
of the edge processor cores in ARM Cortex-M [2] family
for embedded systems only contain integer arithmetic
units, and they can only support NN deployment with
the integer-only kernels [39]. Moreover, one has to
consider that compared to the integer-only inference, the
approaches that use floating point arithmetic are inferior in
latency and power efficiency. For chip designers wishing
to support BERT-like models, adding floating point
arithmetic logic occupies larger die area on a chip, as
compared to integer arithmetic logic. Thus, the complete
removal of floating point arithmetic for inference could
have a major impact on designing applications, software,
and hardware for efficient inference at the edge [2].
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While prior work has shown the feasibility of integer-
only inference [34, 89], these approaches have only
focused on models in computer vision with simple
CNN layers, Batch Normalization (BatchNorm) [32],
and ReLU activations. These are all linear or piece-
wise linear operators. Due to the non-linear operations
used in Transformer architecture, e.g., GELU, Softmax,
and Layer Normalization (LayerNorm), these methods
cannot be applied to Transformer based models. Unlike
ReLU, computing GELU and Softmax with integer-
only arithmetic is not straightforward, due to their non-
linearity. Furthermore, unlike BatchNorm whose parame-
ters/statistics can be fused into the previous convolutional
layer in inference, LayerNorm requires the dynamic
computation of the square root of the variance for each
input. This cannot be naïvely computed with integer-only
arithmetic. Another challenge is that processing GELU,
Softmax, and LayerNorm with low precision can result in
signifciant accuracy degradation [5, 91]. For this reason,
other quantization methods such as [5, 68, 91] keep these
operations in FP32 precision.

In this work, we propose I-BERT to address these
challenges. I-BERT incorporates a series of novel integer-
only quantization scheme for Transformer based models.
Specifically, our contributions are:

• We propose new kernels for the efficient and accurate
integer-only computation of GELU and Softmax. In
particular, we approximate GELU and Softmax with
light-weight second-order polynomials, which can be
evaluated with integer-only arithmetic. We utilize
different techniques to improve the approximation error,
and achieve a maximum error of 1.8×10−2 for GELU,
and 1.9×10−3 for Softmax. See Section III-D and III-E
for details.

• For LayerNorm, we perform integer-only computation
by leveraging a known algorithm for integer calculation
of square root [12]. See Section III-F for details.

• We use these approximations of GELU, Softmax,
and LayerNorm to design integer-only quantization
inference for Transformer based architectures. Specifi-
cally, we process Embedding and matrix multiplication
(MatMul) with INT8 multiplication and INT32 accu-
mulation. The following non-linear operations (GELU,
Softmax, and LayerNorm) are then calculated on the
INT32 accumulated result and then requantized back
to INT8. We represent all parameters and activations
in the entire computational graph with integers, and
we never cast them into floating point. See Figure 1
(right) for a schematic description.

• We apply I-BERT to RoBERTa-Base/Large, and we
evaluate their accuracy on the GLUE [79] downstream
tasks. I-BERT achieves similar results as compared
to full-precision baseline. Specifically, I-BERT out-
performs the baseline by 0.3 and 0.5 on the GLUE
downstream tasks for RoBERTa-Base and RoBERTa-
Large, respectively. See Table II in Section IV-A for
details.

• We deploy INT8 BERT models with the integer-only
kernels for non-linear operations on a T4 GPU using
TensorRT [53]. We show that INT8 inference achieves
up to 4× speedup as compared to FP32 inference. See
Table III in Section IV-B for details.

II. RELATED WORK

Efficient Neural Network. There are several different
approaches to reduce the memory footprint, latency, and
power of modern NN architectures. These techniques can
be broadly categorized into: (1) pruning [21, 24, 26, 41,
45, 47–49, 51, 60, 87]; (2) knowledge distillation [29, 35,
50, 56, 63, 66, 72, 73, 75, 77, 81]; (3) efficient neural
architecture design [14, 30, 31, 40, 65, 74]; (4) hardware-
aware NN co-design [23, 25, 38]; and (5) quantization.
Here, we only focus on quantization and briefly discuss
the related work.

Quantization. For quantization, the parameters and/or
activations are represented with low bit precision [9–
11, 19, 34, 44, 62, 80, 86, 92, 94]. While this line of
research mostly focuses on CNN models, there have
been recent attempts to introduce quantization techniques
into Transformer based models as well. For example,
[5] and [91] propose an 8-bit quantization scheme for
Transformer based models and compress the model size
up to 25% of the original size. Another work [68] applies
uniform and mixed-precision to quantize BERT model,
where a second-order sensitivity method is used for
the mixed-precision setting. [22] quantizes a different
subset of weights in each training iteration to make
models more robust to quantization. Recently, there have
been attempts to quantize BERT with even lower preci-
sion. [90] presents a 3/4-bit centroid-based quantization
method that does not require fine-tuning. [4, 93] leverage
knowledge distillation [29] to ternarize/binarize weights.
[36] combines knowledge distillation and learned step
size quantization [20] method to achieve up to 2-bit
quantization of BERT.

However, to the best of our knowledge, all of the
prior quantization work on Transformer based models
use simulated quantization (aka fake quantization), where
all or part of operations are performed with floating point
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Fig. 1: Comparison of different quantization schemes applied to the self-attention layer in the Transformer architecture.
(Left) Simulated quantization, where all operations are performed with floating point arithmetic. Parameters are
quantized and stored as integer, but they are dequantized into floating point for inference. (Middle) Simulated
quantization, where only a part of operations are performed with integer arithmetic. Because the Softmax in this
figure is performed with floating point arithmetic, the input to the Softmax should be dequantized; and the output
from the Softmax should be quantized back into integer to perform the subsequent integer MatMul. (Right) The
integer-only quantization that we propose. There is neither floating point arithmetic nor dequantization during the
entire inference.

arithmetic. This requires the quantized parameters and/or
activations to be dequantized back to FP32 for the floating
point operations. For example, [68, 90] perform the entire
inference using floating point arithmetic, as schematically
shown in Figure 1 (left). While [4, 5, 91, 93] attempt to
process Embedding and MatMul efficiently with integer
arithmetic, they keep the remaining operations (i.e.,
GELU, Softmax, and LayerNorm) in FP32, as illustrated
in Figure 1 (middle). However, our method I-BERT
uses integer-only quantization for the entire inference
process—i.e., without any floating point arithmetic and
without any dequantization during the entire inference.
This is illustrated in Figure 1 (right). This allows more
efficient hardware deployment on specialized accelerators
or integer-only processors [2] as well as faster and less
energy consuming inference. While we focus on uniform
quantization, our method is complementary to other mixed
and/or low-precision methods, and can be deployed for
those settings as well.

To briefly discuss, there are also several quantization
works for computer vision. [34] introduces an integer-
only quantization scheme for popular CNN models, by
replacing all floating point operations (e.g., convolution,
MatMul, and ReLU) with integer operations. Similarly,
the recent work of [89] extends this approach to low
precision and mixed precision dyadic quantization, which
is an extension of integer-only quantization where no
integer division is used. However, both of these works
are limited to CNN models that only contain linear

and piece-wise linear operators, and they cannot be
applied to Transformer based models with non-linear
operators, e.g., GELU, Softmax, and LayerNorm. Our
work aims to address this limitation by extending the
integer-only scheme to the Transformer based models
without accuracy drop.

III. METHODOLOGY

A. Basic Quantization Method
Under uniform symmetric quantization scheme, a real

number x is uniformly mapped to an integer value q ∈
[−2b−1, 2b−1 − 1], where b specifies the quantization bit
precision. The formal definition is:

q = Q(x, b, S) = Int

(
clip(x,−α, α)

S

)
, (1)

where Q is the quantization operator, Int is the integer
map (e.g., round to the nearest integer), clip is the
truncation function, α is the clipping parameter used
to control the outliers, and S is the scaling factor defined
as α/(2b−1−1). The reverse mapping from the quantized
values q to the real values (aka dequantization) is:

x̃ = DQ(q, S) = Sq ≈ x, (2)

where DQ denotes the dequantization operator. This ap-
proach is referred to as uniform symmetric quantization. It
is uniform because the spacing between quantized values
and their corresponding mapping to real values is constant.
However, several different non-uniform quantization
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methods have also been proposed [9, 55, 86, 92]. While
non-uniform quantization approaches may better capture
the distribution of parameters/activations than uniform
quantization, they are in general difficult to deploy on
hardware (as they often require a look up table which
results in overhead). Thus, we focus only on uniform
quantization in this work. In addition, this approach
is symmetric because we clip the values symmetrically
within a range [−α, α]; while in asymmetric quantization,
the left and right side of this range could be asymmet-
ric/different. Finally, we use static quantization where all
the scaling factors S are fixed during inference to avoid
runtime overhead of computing them. See Section A for
more details in quantization methods.

B. Non-linear Functions with Integer-only Arithmetic
The key to integer-only quantization is to perform

all operations with integer arithmetic without using any
floating point calculation. Unlike linear (e.g., MatMul)
or piece-wise linear operations (e.g., ReLU), this is not
straightforward for non-linear operations (e.g., GELU,
Softmax, and LayerNorm). This is because the integer-
only quantization algorithms in previous works [34, 89]
rely on the linear property of the operator. For example,
MatMul(Sq) is equivalent to S · MatMul(q) for the
linear MatMul operation. This property allows us to
apply integer MatMul to the quantized input q and then
multiply the scaling factor S to obtain the same result
as applying floating point MatMul to the dequantized
input Sq. Importantly, this property does not hold for
non-linear operations, i.e., GELU(Sq) 6= S ·GELU(q).
One naïve solution is to compute the results of these
operations and store them in a look up table [39].
However, such an approach can have overhead when
deployed on chips with limited on-chip memory, and
will create a bottleneck proportional to how fast the
look up table could be performed. Another solution is to
dequantize the activations and convert them to floating
point, and then compute these non-linear operations with
single precision logic [5, 91]. However, this approach
is not integer-only and cannot be used on specialized
efficient hardware that does not support floating point
arithmetic, e.g., ARM Cortex-M [2].

To Address this challenge, we approximate non-linear
activation functions (i.e., GELU and Softmax) with poly-
nomials that can be computed with integer-only arithmetic.
Computing polynomials consists of only addition and
multiplication, which can be performed with integer
arithmetic. As such, if we can find good polynomial
approximations to these operations, then we can perform

Algorithm 1 Integer-only Computation of Second-order
Polynomial a(x+ b)2 + c

Input: q, S: quantized input and scaling factor
Output: qout, Sout: quantized output and scaling factor

function I-POLY(q, S) . qS = x
qb ← bb/Sc
qc ← bc/aS2c
Sout ← baS2c
qout ← (q + qb)

2 + qc
return qout, Sout . qoutSout ≈ a(x+ b)2 + c

end function

the entire inference with integer-only arithmetic. For
instance, a second-order polynomial (represented as
a(x+ b)2 + c) can be efficiently calculated with integer-
only arithmetic as shown in Algorithm 1.1

C. Polynomial Approximation of Non-linear Functions
There is a large body of work on approximating

a function with a polynomial [71]. We use a class
of interpolating polynomials, where we are given the
function value for a set of n + 1 different data points
{(x0, f0), . . . , (xn, fn)}, and we seek to find a polyno-
mial of degree at most n that exactly matches the function
value at these points. It is known that there exists a unique
polynomial of degree at most n that passes through all
the data points [82]. We denote this polynomial by L,
defined as:

L(x) =

n∑
i=0

fili(x) where li(x) =
∏

0≤j≤n
j 6=i

x− xj
xi − xj

. (3)

Interestingly for our problem, we have two knobs
to change to find the best polynomial approximation.
Since we actually know the target function and we can
query its exact value for any input, we can choose the
interpolating points xi to be any point in the grid. The
second knob is to choose the degree of the polynomial.
While choosing a high-order polynomial results in better
error (see Appendix B), there are two problems with this.
First, high-order polynomials have higher computational
overhead and require storing more coefficients in memory.
Second, it is challenging to evaluate them with low-
precision integer-only arithmetic, as overflow can happen
when multiplying integer values. For every multiplication,
we need to use double bit-precision to avoid overflow. As
such, the challenge is to find a good low-order polynomial

1In Algorithm 1, b·c means the floor function. Note that, qb, qc,
and Sout can be pre-computed under static quantization. That is to
say, there is no floating point calculation, e.g., of S/b, in inference.
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that can closely approximate the non-linear functions used
in Transformers. This is what we discuss next, for GELU
and Softmax, in Section III-D and III-E, respectively,
where we show that one can get a close approximation
by using only a second-order polynomial.

D. Integer-only GELU
GELU [28] is a non-linear activation function used in

Transformer models, defined as:

GELU(x) := x · 1
2

[
1 + erf(

x√
2
)

]
,

where erf(x) :=
2√
π

∫ x

0

exp (−t2)dt.
(4)

Here, erf is the error function. Figure 2 shows the
behaviour of the GELU function (shown in red). GELU
has a similar behaviour as ReLU (shown in green)
in the limit of large positive/negative values, but it
behaves differently near zero. Direct evaluation of the
integration term in erf is not computationally efficient.
For this reason, several different approximations have
been proposed for evaluating GELU. For example, [28]
uses Sigmoid to approximate erf:

GELU(x) ≈ xσ(1.702x), (5)

where σ(·) is the Sigmoid function. This approximation,
however, is not a viable solution for integer-only quantiza-
tion, as the Sigmoid itself is another non-linear function
which requires floating point arithmetic. One way to
address this is to approximate Sigmoid with the so-called
hard Sigmoid (h-Sigmoid) proposed by [30] (designed
in the context of efficient computer vision models) to
obtain an integer-only approximation for GELU:

h-GELU(x) := x
ReLU6(1.702x+ 3)

6
≈ GELU(x). (6)

We refer to this approximation as h-GELU. Although
h-GELU can be computed with integer arithmetic, we
observed that replacing GELU with h-GELU in Trans-
formers results in a significant accuracy drop. This is due
to the large gap between h-GELU and GELU as depicted
in Table I.2 Figure 2 (left) also shows the noticeable gap
between those two functions.

A simple way to address the above problem is to
use polynomials to approximate GELU, by solving the
following optimization problem:

min
a,b,c

1

2

∥∥∥∥GELU(x)− x · 1
2

[
1 + L(

x√
2
)

]∥∥∥∥2
2

,

s.t. L(x) = a(x+ b)2 + c,

(7)

2Later in our ablation study, we show this can lead to accuracy
degradation of up to 2.2 percentages, as reported in Table IV.

Fig. 2: (Left) Comparison between RELU, GELU, h-
GELU and i-GELU. (Right) Comparison between expo-
nential (exp) and our integer-only exponential (i-exp).

where L(x) is a second-order polynomial used to ap-
proximate the erf function. Directly optimizing Eq. 7
results in a poor approximation since the definition
domain of erf contains the entire real numbers. To
address this, we only optimize L(x) in a limited range
since erf approaches to 1 (−1) for large values of
x. We also take advantage of the fact that erf is an
odd function (i.e., erf(−x) = −erf(x)), and thus only
consider approximating it in the positive domain. After
finding the best interpolating points ((xi, fi) in Eq. 3)
and applying these adjustments we arrive at the following
polynomial:

L(x) = sgn(x)
[
a(clip(|x|,max = −b) + b)2 + 1

]
, (8)

where a = −0.2888 and b = −1.769, and sgn denotes
the sign function. 3 Using this polynomial we arrive
at i-GELU, the integer-only approximation for GELU,
defined as:

i-GELU(x) := x · 1
2

[
1 + L(

x√
2
)

]
. (9)

Algorithm 2 summarizes the integer-only computation
of GELU using i-GELU. We illustrate the behaviour of i-
GELU in Figure 2 (left). As one can see, i-GELU closely
approximates GELU, particularly around the origin. We
also report the approximation error of i-GELU along with
h-GELU in Table I, where i-GELU has an average error
of 8.2× 10−3 and a maximum error of 1.8× 10−2. This
is ∼ 3× more accurate than h-GELU whose average
and maximum errors are 3.1 × 10−2 and 6.8 × 10−2,
respectively. Also, i-GELU even slightly outperforms the
Sigmoid based approximation of Eq. 5, but without using
any floating point arithmetic. (Computing the Sigmoid
requires floating point.) Later in the results section, we
show that this improved approximation, actually results
in better accuracy of i-GELU as compared to h-GELU
(see Table IV).

3Note that L(x) is approximating GELU in the range of [0,−b].
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Algorithm 2 Integer-only GELU
Input: q, S: quantized input and scaling factor
Output: qout, Sout: quantized output and scaling factor

function I-ERF(q, S) . qS = x
a, b, c← −0.2888,−1.769, 1
qsgn, q ← sgn(q), clip(|q|,max = −b/S)
qL, SL ← I-POLY(q, S) with a, b, c . Eq. 8
qout, Sout ← qsgnqL, SL

return qout, Sout . qoutSout ≈ erf(x)
end function

function I-GELU(q, S) . qS = x
qerf , Serf ← I-ERF(q, S/

√
2)

q1 ← b1/Serfc
qout, Sout ← q(qerf + q1), SSerf/2
return qout, Sout . qoutSout ≈ GELU(x)

end function

Table I: Comparison of different approximation meth-
ods for GELU. The second column (Int-only) indicates
whether each approximation method can be computed
with integer-only arithmetic. As metrics for approximation
error, we report L2 and L∞ distance from GELU across
the range of [-4, 4].

Int-only L2 dist L∞ dist

xσ(1.702x) 7 0.012 0.020
h-GELU 3 0.031 0.068

i-GELU (Ours) 3 0.0082 0.018

E. Integer-only Softmax

Softmax normalizes an input vector and maps it to a
probability distribution:

Softmax(x)i :=
expxi∑k
j=1 expxj

, where x = [x1, . . . , xk].

(10)
Approximating the Softmax layer with integer arithmetic
is quite challenging, as the exponential function used
in Softmax is unbounded and changes rapidly. As such,
prior Transformer quantization techniques [5, 91] treat
this layer using floating point arithmetic. Some prior work
have proposed look up tables with interpolation [67], but
as before we avoid look up tables and strive for a pure
arithmetic based approximation. In addition, although
[27] proposes polynomial approximation methods for the
exponential function, it uses significantly high-degree
polynomials, and is only applicable on a limited finite
domain.

Similar to GELU, we cannot use a high-order poly-
nomial, but even using such polynomial is ineffective

to approximate the exponential function in Softmax.
However, it is possible to address problem by limiting
the approximation range of Softmax. First, we subtract
the maximum value from the input to the exponential for
numerical stability:

Softmax(x)i =
exp (xi − xmax)∑k
j=1 exp (xj − xmax)

, (11)

where xmax = maxi(xi). Note that now all the inputs to
the exponential function, i.e., x̃i = xi − xmax, become
non-positive. It is known that we can decompose any
non-positive real number x̃ as x̃ = (− ln 2)z + p, where
the quotient z is a non-negative integer and the remainder
p is a real number in (− ln 2, 0]. Then, the exponential
of x̃ can be written as:

exp(x̃) = 2−z exp(p) = exp(p)>>z, (12)

where >> is the bit shifting operation. As a result, we
only need to approximate the exponential function in
the compact interval of p ∈ (− ln 2, 0]. This is a much
smaller range as compared to the domain of all real
numbers. Interestingly, a variant of this method was used
in the Itanium 2 machine from HP [15, 76], but with a
look up table for evaluating exp(p).

We use a second-order polynomial to approximate the
exponential function in this range. To find the coefficients
of the polynomial, we minimize the L2 distance from
exponential function in the interval of (− ln 2, 0]. This
results in the following approximation:

L(p) = 0.3585(p+ 1.353)2 + 0.344 ≈ exp(p). (13)

Substituting the exponential term in Eq. 12 with this
polynomial results in i-exp:

i-exp(x̃) := L(p)>>z (14)

where z = b−x̃/ ln 2c and p = x̃+ z ln 2. This can be
calculated with integer arithmetic. Algorithm 3 describes
the integer-only computation of the Softmax fucntion
using i-exp. Figure 2 (right) plots the result of i-exp,
which is nearly identical to the exponential function. We
find that the largest gap between these two functions is
only 1.9× 10−3. Considering that 8-bit quantization of a
unit interval introduces a quantization error of 1/256 =
3.9×10−3, our approximation error is relatively negligible
and can be subsumed into the quantization error.

F. Integer-only LayerNorm
LayerNorm is commonly used in Transformers and

involves several non-linear operations, such as division,
square, and square root. This operation is used for
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Algorithm 3 Integer-only Exponential and Softmax
Input: q, S: quantized input and scaling factor
Output: qout, Sout: quantized output and scaling factor

function I-EXP(q, S) . qS = x
a, b, c← 0.3585, 1.353, 0.344
qln 2 ← bln 2/Sc
z ← b−q/qln 2c
qp ← q + zqln 2 . qpS = p
qL, SL ← I-POLY(qp, S) with a, b, c . Eq. 13
qout, Sout ← qL>>z, SL

return qout, Sout . qoutSout ≈ exp(x)
end function

function I-SOFTMAX(q, S) . qS = x
q̃ ← q −max(q)
qexp, Sexp ← I-EXP(q̃, S)
qout, Sout ← qexp/sum(qexp), Sexp

return qout, Sout . qoutSout ≈ Softmax(x)
end function

normalizing the input activation across the channel
dimension. The normalization process is described as:

x̃ =
x− µ
σ

where µ =
1

C

C∑
i=1

xi and σ =

√√√√ 1

C

C∑
i=1

(xi − µ)2.

(15)
Here, µ and σ are the mean and standard deviation
of the input across the channel dimension. One subtle
challenge here is that the input statistics (i.e., µ and σ)
change rapidly for NLP tasks, and these values need to be
calculated dynamically during runtime. While computing
µ is straightforward, evaluating σ requires the square-root
function.

The square-root function can be efficiently evaluated
with integer-only arithmetic through an iterative algorithm
proposed in [12], as described in Algorithm 4. Given any
non-negative integer input n, this algorithm iteratively
searches for the exact value of b

√
nc based on New-

ton’s Method and only requires integer arithmetic. This
algorithm is computationally lightweight, as it converges
within at most four iterations for any INT32 inputs and
each iteration consists only of one integer division, one
integer addition, and one bit-shifting operation. The rest
of the the non-linear operations in LayerNorm such as
division and square are straightforwardly computed with
integer arithmetic.

IV. RESULTS

In this section, we first measure the accuracy of
I-BERT using the General Language Understanding
Evaluation [79] (GLUE) benchmark (Section IV-A). Then,

Algorithm 4 Integer-only Square Root
Input: n: input integer
Output: integer square root of n, i.e., b

√
nc

function I-SQRT(n)
if n = 0 then return 0
Intialize x0 to 2dBits(n)/2e and i to 0
repeat

xi+1 ← b(xi + bn/xic)/2c
if xi+1 ≥ xi then return xi
else i← i+ 1

end function

we discuss the latency speedup of I-BERT using direct
hardware deployment and compare it with pure FP32
model (Section IV-B). Finally, we conduct ablation
studies to showcase the effectiveness of our integer-only
approximation methods (Section IV-C).

A. Accuracy Evaluation on GLUE

We implement I-BERT on the RoBERTa [46] model
using [54]. For the integer-only implementation, we
replace all the floating point operations in the original
model with the corresponding integer-only operations that
were discussed in Section III. In particular, we perform
MatMul and Embedding with INT8 precision, and the
non-linear operations with INT32 precision, as using
INT32 for computing these operations has little overhead.
See Section C1 for implementation details. For each
of the GLUE downstream tasks, we train both FP32
baseline and integer-only I-BERT models, and evaluate
the accuracy on the development set. See Appendix C2
and C3 for training and evaluation details. While we only
test RoBERTa-Base/Large, our method is not restricted to
RoBERTa (or Transformers for that matter). The integer-
only approximations can be performed for any NN model
that uses similar non-linear operations.

The integer-only quantization results for RoBERTa-
Base/Large are presented in Table II. As one can see,
I-BERT consistently achieves comparable or slightly
higher accuracy than baseline. For RoBERTa-Base, I-
BERT achieves higher accuracy for all cases (up to 1.4
for RTE), except for MNLI-m, QQP, and STS-B tasks,
where we observe a small accuracy degradation up to
0.3. We observe a similar behaviour on the RoBERTa-
Large model, where I-BERT matches or outperforms
the baseline accuracy for all the downstream tasks. On
average, I-BERT outperforms the baseline by 0.3/0.5 for
RoBERTa-Base/Large, respectively.
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Table II: Integer-only quantization result for RoBERTa-Base and RoBERTa-Large on the development set of the
GLUE benchmark. Baseline is trained by the authors from the pre-trained models, and I-BERT is quantized and
fine-tuned from the baseline. We also report the difference (Diff) between the baseline accuracy and the I-BERT
accuracy.

(a) RoBERTa-Base

Precision Int-only MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

Baseline FP32 7 87.8 87.4 90.4 92.8 94.6 61.2 91.1 90.9 78.0 86.0
I-BERT INT8 3 87.5 87.4 90.2 92.8 95.2 62.5 90.8 91.1 79.4 86.3

Diff -0.3 0.0 -0.2 0.0 +0.6 +1.3 -0.3 +0.2 +1.4 +0.3

(b) RoBERTa-Large

Precision Int-only MNLI-m MNLI-mm QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.

Baseline FP32 7 90.0 89.9 92.8 94.1 96.3 68.0 92.2 91.8 86.3 89.0
I-BERT INT8 3 90.4 90.3 93.0 94.5 96.4 69.0 92.2 93.0 87.0 89.5

Diff +0.4 +0.4 +0.2 +0.4 +0.1 +1.0 0.0 +1.2 +0.7 +0.5

B. Latency Evaluation

We evaluate the latency speedup of INT8 inference
of I-BERT, by direct deployment on a Tesla T4 GPU
with Turing Tensor Cores that supports accelerated INT8
execution. Although T4 GPU is not a pure integer-only
hardware, we select it as our target device due to its
extensive software support [8, 53], and in particular
Nvidia’s TensorRT library [53]. See Section C4 for the
detailed environment setup. For evaluation, we implement
two variants of BERT-Base/Large: (1) pure FP32 models
using naïve FP32 kernels for non-linear operations; and
(2) quantized INT8 models using customized kernels
for the non-linear operations. The customized kernels
compute GELU, Softmax, and LayerNorm based on
the integer-only methods described in Section III. We
measure the inference latency for different sequence
lengths (128 and 256) and batch sizes (1, 2, 4, and 8).

Table III shows the inference latency speedup of INT8
models with respect to FP32 models. As one can see,
the INT8 inference of I-BERT is on average 3.08×
and 3.56× faster than pure FP32 inference for BERT-
Base and BERT-Large, respectively, achieving up to
4.00× speedup. The result implies that, when deployed
on specialized hardware that supports efficient integer
computations, I-BERT can achieve significant speedup as
compared to FP32 models. Further speedups are possible
with NVIDIA’s custom Transformer plugins [52] which
fuse the multi-head attention and Softmax layers (see
Section C4).

While the greatest value of our work will become
evident when our approach enables quantization on lower-

Table III: Inference latency speedup of INT8 inference
with respect to FP32 inference for BERT-Base and BERT-
Large. Latency is measured for different sentence lengths
(SL) and batch sizes (BS).

SL 128 256
Avg.BS 1 2 4 8 1 2 4 8

Base 2.42 3.36 3.39 3.31 3.11 2.96 2.94 3.15 3.08
Large 3.20 4.00 3.98 3.81 3.19 3.51 3.37 3.40 3.56

end microprocessors without floating-point hardware,
this demonstration must wait for improved software
support for implementing quantized NN models on those
processors. In the meantime, we believe the promise of
our approach is illustrated by these latency reductions
shown above.

C. Ablation Studies

Here, we perform an ablation study to show the benefit
of i-GELU as compared to other approximation methods
for GELU, and in particular h-GELU in Eq. 6. For
comparison, we implement two variants of I-BERT by
replacing i-GELU with GELU and h-GELU, respectively.
The former is the exact computation of GELU with
floating point arithmetic, and the later is another integer-
only approximation method for GELU (see Section III).
We use RoBERTa-Large model as baseline along with
the QNLI, SST-2, MPRC, and RTE tasks. All models
are trained and fine-tuned according to the procedure
described in Section IV-A, and the final accuracies are
reported in Table IV.
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Table IV: Accuracy of models that use GELU, h-GELU
and i-GELU for GELU computation. Note that the former
is full-precision, floating point computation while the
latter two are integer-only approximations.

Int-only QNLI SST-2 MRPC RTE Avg.

GELU 7 94.4 96.3 92.6 85.9 92.3
h-GELU 3 94.3 96.0 92.8 84.8 92.0

i-GELU 3 94.5 96.4 93.0 87.0 92.7

As one can see, replacing GELU with h-GELU approxi-
mation results in accuracy degradation for all downstream
tasks except for MRPC. Accuracy drops by 0.5 on
average and up to 1.1 for RTE task. Although accuracy
slightly improves for MRPC, the amount of increase
is smaller than replacing GELU with i-GELU. This
empirically demonstrates that h-GELU is not sufficiently
tight enough to approximate GELU well. Approximating
GELU with i-GELU results in strictly better accuracy for
all four downstream tasks than h-GELU. In particular,
i-GELU outperforms h-GELU by 0.7 on average, and
it achieves comparable or slightly better result to the
non-approximated full-precision GELU. i-GELU also
performs better than GELU, which is quite interesting,
but at this time, we do not have an explanation for this
behaviour.

V. CONCLUSIONS

We have proposed I-BERT, a novel integer-only
quantization scheme for Transformers, where the entire
inference is performed with pure integer arithmetic.
Key elements of I-BERT are approximation methods
for nonlinear operations such as GELU, Softmax, and
LayerNorm, which enable their approximation with
integer computation. We empirically evaluated I-BERT
on RoBERTa-Base/Large models, where our quantization
method improves the average GLUE score by 0.3/0.5
points as comapred to baseline. Furthermore, we directly
deployed the quantized models and measured the end-to-
end inference latency, showing that I-BERT can achieve
up to 4.00× speedup on a Tesla T4 GPU as compared to
floating point baseline. As part of future work, one could
consider using our approximation to improve the training
speed as well. For instance, one could consider replacing
GELU with i-GELU during training. Also, further studies
are needed to evaluate the performance benefit of i-GELU
as compared to GELU.
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APPENDIX

A. Quantization Methods
1) Symmetric and Asymmetric Quantization: Symmetric and asymmetric quantization are two different methods

for uniform quantization. Uniform quantization is a uniform mapping from floating point x ∈ [xmin, xmax] to b-bit
integer q ∈ [−2b−1, 2b−1 − 1]. Before the mapping, input x that does not fall into the range of [xmin, xmax] should
be clipped. In asymmetric quantization, the left and the right side of the clipping range can be different, i.e.,
−xmin 6= xmax. However, this results in a bias term that needs to be considered when performing multiplication
or convolution operations [34]. For this reason, we only use symmetric quantization in this work. In symmetric
quantization, the left and the right side of the clipping range must be equal, i.e., −xmin = xmax = α, and the
mapping can be represented as Eq. 1.

2) Static and Dynamic Quantization: There is a subtle but important factor to consider when computing the
scaling factor, S. Computing this scaling factor requires determining the range of parameters/activations (i.e., α
parameter in Eq. 1). Since the model parameters are fixed during inference, their range and the corresponding
scaling factor can be precomputed. However, activations vary across different inputs, and thus their range varies.
One way to address this issue is to use dynamic quantization, where the activation range and the scaling factor are
calculated during inference. However, computing the range of activation is costly as it requires a scan over the entire
data and often results in significant overhead. Static quantization avoids this runtime computation by precomputing
a fixed range based on the statistics of activations during training, and then uses that fixed range during inference.
As such, it does not have the runtime overhead of computing the range of activations. For maximum efficiency, we
adopt static quantization, with all the scaling factors fixed during inference.

B. Error Term of Eq. 3
As one can see, the polynomial approximation of Eq. 3 exactly matches the data at the interpolating points

(xj , fj). The error between a target function f(x) and the polynomial approximation L(x) is then:

|f(x)− L(x)| =
∣∣∣∣f (n+1)(ξ)

(n+ 1)!
(x− x0) . . . (x− xn)

∣∣∣∣ , (16)

where ξ is some number that lies in the smallest interval containing x0, ..., xn. In general, this error reduces for
large n (for a properly selected set of interpolating points). Therefore, a sufficiently high-order polynomial that
interpolates a target function is guaranteed to be a good approximation for it. We refer interested readers to [71] for
more details on polynomial interpolation.

C. Experimental Details
1) Implementation: In I-BERT, all the MatMul operations are performed with INT8 precision, and are accumulated

to INT32 precision. Furthermore, the Embedding layer is kept at INT8 precision. Moreover, the non-linear operations
(i.e., GELU, Softmax, and LayerNorm) are processed with INT32 precision, as we found that keeping them at high
precision is important to ensure no accuracy degradation after quantization. Importantly, note that using INT32 for
computing these operations has little overhead, as input data is already accumulated with INT32 precision, and
these non-linear operations have linear computational complexity. We perform Requantization [89] operation after
these operations to bring the precision down from INT32 back to INT8 so that the follow up operations (e.g., next
MatMuls) can be performed with low precision.

2) Training: We evaluate I-BERT on the GLUE benchmark [79], which is a set of 9 natural language understanding
tasks, including sentimental analysis, entailment, and question answering. We first train the pre-trained RoBERTa
model on the different GLUE downstream tasks until the model achieves the best result on the development set.
We report this as the baseline accuracy. We then quantize the model and perform quantization-aware fine-tuning
to recover the accuracy degradation caused by quantization. We refer the readers to [89] for more details about
the quantization-aware fine-tuning method for integer-only quantization. We search the optimal hyperparameters
in a search space of learning rate {5e − 7, 1e − 6, 1.5e − 6, 2e − 6}, self-attention layer dropout {0.0, 0.1}, and
fully-connected layer dropout {0.1, 0.2}, except for the one after GELU activation that is fixed to 0.0. We fine-tune
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up to 6 epochs for larger datasets (e.g., MNLI and QQP), and 12 epochs for the smaller datasets. We report the best
accuracy of the resulting quantized model on the development set as I-BERT accuracy.

3) Accuracy Evaluation on the GLUE Tasks: For evaluating the results, we use the standard metrics for each
task in GLUE. In particular, we use classification accuracy and F1 score for QQP [33] and MRPC [18], Pearson
Correlation and Spearman Correlation for STS-B [7], and Mathews Correlation Coefficient for CoLA [83]. For the
remaining tasks [13, 61, 70, 84], we use classification accuracy. For the tasks with multiple metrics, we report the
average of them. Since there are two development sets for MNLI [84], i.e., MNLI-match (MNLI-m) for in-domain
evaluation, and MNLI-mismatch (MNLI-mm) for cross-domain evaluation, and we report the accuracy on both
datasets. We exclude WNLI [43] as it has relatively small dataset and shows an unstable behaviour [17].

4) Environment Setup for Latency Evaluation: We use TensorRT 7.2.1 to deploy and tune the latency of BERT-
Base and BERT-Large models (both INT8 and FP32) on Google Cloud Platform virtual machine with a single Tesla
T4 GPU, CUDA 11.1, and cuDNN 8.0.

We should also mention that the most efficient way of implementing BERT with TensorRT is to use NVIDIA’s
plugins [52] that optimize and accelerate key operations in the Transformer architecture via operation fusion. Our
estimates are that INT8 inference using NVIDIA’s plugins is about 2 times faster than naïvely using TensorRT APIs.
However, we cannot modify those plugins to support our integer-only kernels as they are partially closed sourced
and pre-compiled. Therefore, our latency evaluation is conducted without fully utilizing NVIDIA’s plugins. This
leaves us a chance for further optimization to achieve our latency speedup relative to FP32 even more significant.
As such, one could expect the potential for a further 2× speed up with INT8 quantization.
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