
Hessian-Aware Pruning and Optimal Neural Implant
Shixing Yu∗,1, Zhewei Yao∗,2 Amir Gholami∗,†,2, Zhen Dong∗,2, Michael W. Mahoney2, Kurt Keutzer2

1Peking University, 2University of California, Berkeley
yushixing@pku.edu.cn, {zheweiy, amirgh, zhendong, mahoneymw, keutzer}@berkeley.edu

Abstract—Pruning is an effective method to reduce
the memory footprint and FLOPs associated with neu-
ral network models. However, existing structured-pruning
methods often result in significant accuracy degradation
for moderate pruning levels. To address this problem, we
introduce a new Hessian Aware Pruning (HAP) method
coupled with a Neural Implant approach that uses second-
order sensitivity as a metric for structured pruning. The
basic idea is to prune insensitive components and to use
a Neural Implant for moderately sensitive components,
instead of completely pruning them. For the latter ap-
proach, the moderately sensitive components are replaced
with with a low rank implant that is smaller and less
computationally expensive than the original component.
We use the relative Hessian trace to measure sensitivity,
as opposed to the magnitude based sensitivity metric
commonly used in the literature. We test HAP on mul-
tiple models on CIFAR-10/ImageNet, and we achieve new
state-of-the-art results. Specifically, HAP achieves 94.3%
accuracy (< 0.1% degradation) on PreResNet29 (CIFAR-
10), with more than 70% of parameters pruned. Moreover,
for ResNet50 HAP achieves 75.1% top-1 accuracy (0.5%
degradation) on ImageNet, after pruning more than half
of the parameters. The framework has been open sourced
and available online [1].

I. INTRODUCTION

There has been a significant increase in the compu-
tational resources required for Neural Network (NN)
training and inference. This is in part due to larger input
sizes (e.g., higher image resolution) as well as larger NN
models requiring more computation with a significantly
larger memory footprint. The slowing down of Moore’s
law, along with challenges associated with increasing
memory bandwidth, has made it difficult to deploy these
models in practice. Often, the inference time and associ-
ated power consumption is orders of magnitude higher
than acceptable ranges. This has become a challenge
for many applications, e.g., health care and personalized
medicine, which have restrictions on uploading data to
cloud servers, and which have to rely on local servers with

∗Equal contribution.
†Correspondence to: Amir Gholami: amirgh@berkeley.edu

𝐻

𝑊

𝐶!"

𝐻

𝑊

𝐶!"#

𝐻

𝑊

𝐶!"

𝐻

𝑊

𝐶!"#

𝐻𝐴𝑃

𝐻𝐴𝑃 + 	𝑁𝑒𝑢𝑟𝑎𝑙	𝐼𝑚𝑝𝑙𝑎𝑛𝑡

Sensitive
(Use Neural Implant)

Conv	Kernels

Very Sensitive
(do not prune)

Insensitive
(Prune)

Very Sensitive
(do not prune)

Insensitive
(Prune)

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

0

0.5

1

✏1

✏2

Lo
ss

(L
og

)

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

0

0.5

1

✏1

✏2

L
os

s(
L
og

)

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

0

0.5

1

✏1

✏2

Lo
ss

(L
og

)

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

0

0.5

1

✏1

✏2

Lo
ss

(L
og

)

�0.4
�0.2

0
0.2

0.4 �0.4 �0.2 0 0.2 0.4

0

0.5

1

✏1

✏2

L
os

s(
L
og

)

Loss	Landscape

Fig. 1: (Top) The HAP method is a structured pruning
method that prunes channels based on their second-order
sensitivity, which measured flatness/sharpness of loss
landscape. Channels are sorted based on this metric, and
only insensitive channels are pruned. (Bottom) Similar
to other structured-pruning methods, HAP at large
pruning ratios results in accuracy degradation. This
because one has to inevitably prune moderately sensitive
channels at high pruning ratios, which may contain
individual neurons that are very sensitive. The removal
of the entire channel, along with the sensitive neurons
results in accuracy degradation. To address this, we
propose HAP+IMPLANT method, where such channels
are replaced with a light-weight, low-rank Neural Implant,
and the network with the implant is then fine-tuned to
recover performance. This enables higher accuracy with
structured-pruning.

limited resources. Other applications include inference on
edge devices such as mobile processors, security cameras,
and intelligent traffic control systems, all of which require
real-time inference. Importantly, these problems are not
limited to edge devices, and state-of-the-art models for
applications such as speech recognition, natural language
processing, and recommendation systems often cannot

ar
X

iv
:2

10
1.

08
94

0v
2

 [
cs

.C
V

]
 6

 F
eb

 2
02

1

be efficiently performed even on high-end servers.
A promising approach to address this is pruning.

However, an important challenge is determining which
parameters are insensitive to the pruning process. A brute-
force method is not feasible since one has to test each
parameter in the network separately and measure its
sensitivity. The seminal work of [25] proposed Optimal
Brain Damage (OBD), a second-order based method to
determine insensitive parameters. However, this approach
requires pruning the parameters one at a time, which is
time-consuming. To address this problem, we propose a
simple, yet effective, modification of OBD by using the
Hessian trace to prune a group of parameters along with a
low rank Neural Implant. In more detail, our contributions
are as follows:
• We propose HAP, a Hessian Aware Pruning method

that uses a fast second-order metric to find insensitive
parameters in a NN model. In particular, we use the
average Hessian trace to weight the magnitude of the
parameters in the NN. Parameters with large second-
order sensitivity remain unpruned, and those with
relatively small sensitivity are pruned. In contrast to
OBD [25], HAP finds groups of insensitive parameters,
which is faster than pruning a single parameter at a
time. Details of the HAP method are discussed in
Section III.

• We propose a novel Neural Implant (denoted by
HAP+IMPLANT) technique to alleviate accuracy degra-
dation. In this approach, we replace moderately sensi-
tive model components with a low rank implant. The
model along with the implant is then fine-tuned. We
find that this approach helps boost the accuracy. For
details, see Section III-C.

• We perform detailed empirical testing and show that
HAP achieves 94.3% accuracy (< 0.1% degradation)
on PreResNet29 (CIFAR-10), with only 31% param-
eters left (Figure 3). In comparison to EigenDamage,
a recent second-order pruning method, we achieve
up to 1.2% higher accuracy with fewer parameters
and FLOPs (Figure 3). Moreover, for ResNet50, HAP
achieves 75.1% top-1 accuracy (0.5% degradation)
on ImageNet, with only half of the parameters left
(Table II). In comparison to prior state-of-the-art
HRank [28], HAP achieves up to 2% higher accuracy
with fewer parameters and FLOPs (Table II).

• We perform detailed ablation experiments to illustrate
the efficacy of the second-order sensitivity metric. In
particular, we compare the second-order sensitivity with
a random method, and a reverse-order in which the
opposite order sensitivity order given by HAP is used.

In all cases, HAP achieves higher accuracy (Table IV).

II. RELATED WORK

Several different approaches have been proposed to
make NN models more efficient by making them more
compact, faster, and more energy efficient. These efforts
could be generally categorized as follows: (i) efficient
NN design [18, 19, 22, 34, 39, 50]; (ii) hardware-aware
NN design [5, 10, 33, 40, 42, 45]; (iii) quantization [7,
8, 21, 23, 24, 43]; (iv) distillation [17, 36, 38, 48]; and
(v) pruning.

Here we briefly discuss the related work on pruning,
which can be broadly categorized into: unstructured
pruning [6, 26, 37, 44]; and structured pruning [14, 20,
29, 32, 49, 51]. Unstructured pruning prunes out neurons
without any structure. However, this leads to sparse matrix
operations which are hard to accelerate and are typically
memory-bounded [4, 9]. This can be addressed with
structured pruning, where an entire matrix operation (e.g.,
an output channel) is removed. However, the challenge
here is that high degrees of structured pruning often leads
to significant accuracy degradation.

In both approaches, the key question is to find which
parameters to prune. A simple and popular approach is
magnitude-based pruning. In this approach, the magni-
tude of parameters is used as the pruning metric. The
assumption here is that small parameters are not important
and can be removed. A variant of this approach was
used in [31], where the scaling factor of the batch
normalization layer is used as the sensitivity metric.
In particular, channels with smaller scaling factors (or
output values) are considered less important and got
pruned. Another variation is proposed by [27], where
channel-wise summation over weights is used as the
metric. Other methods have been proposed as alternative
sensitivity metrics. For instance, [28] uses channel rank
as sensitivity metric; [16] uses a LASSO regression based
channel selection criteria; and [15] uses the geometric
median of the convolutional filters. An important problem
with magnitude-based pruning methods is that parameters
with small magnitudes can actually be quite sensitive. It
is easy to see this through a second-order Taylor series
expansion, where the perturbation is dependent on not
just the weight magnitude but also the Hessian [25]. In
particular, small parameters with large Hessian could in
fact be very sensitive, as opposed to large parameters with
small Hessian (here, we are using small/large Hessian
loosely; the exact metric to measure is given by the
second-order perturbation in Eq. 4). For this reason,
OBD [25] proposes to use the Hessian diagonal as

Fig. 2: Illustration of Hessian-Aware Pruning (HAP).
Channels are sorted based on their second-order sensi-
tivity (Eq. 11). Insensitive channels are pruned (shown
in gray), while sensitive channels are preserved (shown
in red).

the sensitivity metric. The follow up work of Optimal
Brain Surgeon (OBS) [11, 12] used a similar method,
but considered off-diagonal Hessian components, and
showed a correlation with inverse Hessian. One important
challenge with these methods is that pruning has to be
performed one parameter at a time. The recent work
of [6] extends this to layer-wise pruning in order to
reduce the cost of computing Hessian information for
one parameter at a time. However, this method can
result in unstructured pruning. Another second-order
pruning method is EigenDamage [41], where the Gauss-
Newton operator is used instead of Hessian. In particular,
the authors use Kronecker products to approximate the
GN operator. Our findings below show that using the
average Hessian trace method significantly outperforms
EigenDamage. We also find that it is very helpful to
replace moderately sensitive layers with a low rank
Neural Implant, instead of completely pruning them, as
discussed next.

III. METHODOLOGY

A. Background

Here, we focus on supervised learning tasks, where
the nominal goal is to minimize the empirical risk by
solving the following optimization problem:

L(w) =
1

N

N∑
i=1

l(xi, yi, w), (1)

where w ∈ Rn is the trainable model parameters,
l(xi, yi, w) is the loss for the input datum xi, where
yi is the corresponding label, and N is the training
set cardinality. For pruning, we assume that the model
is already trained and converged to a local minima

which satisfies the first and second-order optimality
conditions (that is, the gradient ∇wL(w) = 0, and the
Hessian is Positive Semi-Definite (PSD), ∇2

wL(w) < 0).
The problem statement is to prune (remove) as many
parameters as possible to reduce the model size and
FLOPs to a target threshold with minimal accuracy
degradation.

We first start with a general description of the problem
and then derive our method. Let ∆w ∈ Rn denote the
pruning perturbation such that the corresponding weights
become zero (that is w + ∆w = 0). We denote the
corresponding change of loss as ∆L:

∆L = L(w + ∆w)− L(w). (2)

From a Taylor series expansion, we have:

∆L = gT ∆w +
1

2
∆wTH∆w +O(||∆w||3), (3)

where g ∈ Rn denotes the gradient of loss function L
w.r.t. weights w, and H ∈ Rn×n is the corresponding
Hessian operator (i.e. second-order derivative). For a
pretrained neural network that has already converged to a
local minimum, we have g = 0, and the Hessian is a PSD
matrix. As in prior work [12], we assume higher-order
terms, e.g., O(||∆w||3), in Eq. 3 can be ignored.

The pruning problem is to find the set of weights that
result in minimum perturbation to the loss (∆L). This
leads to the following constrained optimization problem:

min
∆w

1

2
∆wTH∆w =

1

2

(
∆wp

∆wl

)T (
Hp,p Hp,l

Hl,p Hl,l

)(
∆wp

∆wl

)
,

s.t. ∆wp + wp = 0.

(4)

Here, we denote the channels that are pruned with p as
the subscript (e.g. wp ∈ Rp), and denote the remaining
parameters with l as the subscript (e.g. wl ∈ Rn−p). Sim-
ilarly, we use ∆wp and ∆wl to denote the corresponding
perturbations. Note that ∆wp = −wp since p-channels
are pruned. Moreover, Hl,p denotes the cross Hessian
w.r.t. l-channels and p-channels (and similarly Hp,p and
Hl,l are Hessian w.r.t. pruned and unpruned parameters).
This optimization problem can be solved by forming the
corresponding Lagrangian and finding its saddle points:

L =
1

2
∆wTH∆w + λT (∆wp + wp),

∂L
∂∆w

= H∆w +

(
λ
0

)
= 0,(

Hp,p Hp,l

Hl,p Hl,l

)(
∆wp

∆wl

)
+

(
λ
0

)
= 0,

(5)

where λ ∈ Rp is the Lagrange multiplier. By expanding
this equation, we get:

Hp,p∆wp +Hp,l∆wl + λ = 0, (6)

Hl,p∆wp +Hl,l∆wl = 0. (7)

Using the constraint in Eq. 4 and adding it to Eq. 7, we
have:

−Hl,pwp +Hl,l∆wl = 0,

∆wl = H−1
l,l Hl,pwp.

(8)

This equation gives us the optimal change to the unpruned
parameters (wl), if a pre-selected set of weights is pruned
(wp). Inserting this into Eq. 4, results in the following:

1

2
∆wTH∆w =

1

2
wT

p (Hp,p −Hp,lH
−1
l,l Hl,p)wp. (9)

Eq. 9 gives us the perturbation to the loss when a set
of parameters wp is removed. It should be noted that
OBS [12] and L-OBS [6], where OBS is applied for each
layer under the assumption of cross-layer independence,
is a degenerate case of Eq. 9 for the special case of
wp ∈ R1. Next we discuss how this general formulation
can be simplified.

B. Hessian-aware Pruning

There are three major disadvantages with OBS. First,
computing Eq. 9 requires computing (implicitly) informa-
tion from the inverse Hessian, H−1

l,l . This can be costly,
both in terms of computations and memory (even when
using matrix-free randomized methods). The work of L-
OBS [6] attempted to address this challenge by ignoring
cross-layer dependencies, but it still requires computing
block-diagonal inverse Hessian information, which can
be costly. Second, in both OBS and L-OBS, one has to
measure this perturbation for all the parameters separately,
and then prune those parameters that result in the smallest
perturbation. This can have a high computational cost,
especially for deep models with many parameters. Third,
this pruning method results in unstructured pruning,
which is difficult to accelerate with current hardware
architectures.

In the OBD [25] method the first problem does not
exist as the the Hessian is approximated as a diagonal
operator, without the need to compute inverse Hessian:

1

2
∆wTH∆w ≈ 1

2
wT

pDiag(Hp,p)wp. (10)

Here Diag(Hp,p) denotes the diagonal elements of Hp,p.
However, the second and third of these disadvantages
still remain with OBD.

To address the second and third of these disadvantages,
we propose to group the parameters and to compute the
corresponding perturbation when that group is pruned,
rather than computing the perturbation for every single
parameter separately. Note that this can also address the
third disadvantage, since pruning a group of parameters

(for example parameters in a convolution channel) results
in structured pruning. This can be achieved by considering
the Hessian as a block diagonal operator, and then
approximating each block with a diagonal operator, with
Hessian trace as the diagonal entries. In particular, we
use the following approximation:

1

2
∆wTH∆w =

1

2
wT

p [H−1]−1
p,pwp

≈ 1

2
wT

p

Trace(Hp,p)

p
wp

=
Trace(Hp,p)

2p
‖wp‖22,

(11)

where Trace(Hp,p) denotes the trace of the block di-
agonal Hessian (the corresponding Hessian block for
pruned parameters Hp,p). The Hessian can be computed
very efficiently with randomized numerical linear algebra
methods, in particular Hutchinson’s method [2, 3, 46, 47].
Importantly, this approach requires computing only the
application of the Hessian to a random input vector. This
has the same cost as back-propagating the gradient [46,
47]. (Empirically, in our experiments corresponding to
ResNet50 on ImageNet, the longest time for computing
this trace was three minutes.) A similar approach was
proposed by [7] in the context of quantization.

Figure 2 shows a schematic illustration of HAP,
where only sensitive layers are pruned, based on their
second-order perturbation. In more detail, HAP performs
structured pruning by grouping the parameters and
approximating the corresponding Hessian as a diagonal
operator, with the average Hessian trace of that group as
its entries. For a convolutional network, this group can be
an output channel. We found that this simple modification
results in a fast and efficient pruning method that when
combined with the Neural Implant approach exceeds
state-of-the-art. This is discussed next.

C. Hessian-aware Neural Implant

In HAP, we sort the channels from most sensitive to
least sensitive (based on Eq. 11). For a target model size
or FLOPs budget, one has then to prune by starting from
insensitive channels. This approach works well, as long
as all these channels are extremely insensitive. However,
in practice, some of the sorted channels will exhibit some
level of sensitivity. Entirely pruning these channels, and
leaving the rest of the sensitive ones unpruned, can result
in significant accuracy degradation. This is one of the
major problems with structured pruning methods, as very
few groups of parameters are completely insensitive. As
soon as those are pruned, the remaining groups/set of
parameters will always include some subset of highly

1 0 2 0 3 0 4 0 5 0 6 0 7 0
9 0 . 0
9 0 . 5
9 1 . 0
9 1 . 5
9 2 . 0
9 2 . 5
9 3 . 0
9 3 . 5
9 4 . 0
9 4 . 5
9 5 . 0

Ac
cu

rac
y (

%)

R e s N e t 5 6 R e m a i n i n g P a r a m e t e r s (%)

 H A P + I m p l a n t
 H A P
 E i g e n D a m a g e

B a s e l i n e 9 3 . 8 8

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0

9 3 . 0

9 3 . 5

9 4 . 0

9 4 . 5

9 5 . 0

9 5 . 5

9 6 . 0

Ac
cu

rac
y (

%)

W i d e R e s N e t 3 2 R e m a i n i n g P a r a m e t e r s (%)

 H A P + I m p l a n t
 H A P
 E i g e n D a m a g e

B a s e l i n e 9 5 . 3 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
8 7
8 8
8 9
9 0
9 1
9 2
9 3
9 4
9 5

Ac
cu

rac
y (

%)

P r e R e s N e t 2 9 R e m a i n i n g P a r a m e t e r s (%)

 H A P + I m p l a n t
 H A P
 E i g e n D a m a g e
 N N S l i m m i n g

B a s e l i n e 9 4 . 3 9

2 0 3 0 4 0 5 0 6 0 7 0
9 0 . 0
9 0 . 5
9 1 . 0
9 1 . 5
9 2 . 0
9 2 . 5
9 3 . 0
9 3 . 5
9 4 . 0
9 4 . 5
9 5 . 0

Ac
cu

rac
y (

%)

R e s N e t 5 6 R e m a i n i n g F L O P s (%)

 H A P + I m p l a n t
 H A P
 E i g e n D a m a g e

B a s e l i n e 9 3 . 8 8

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0

9 3 . 0

9 3 . 5

9 4 . 0

9 4 . 5

9 5 . 0

9 5 . 5

9 6 . 0

Ac
cu

rac
y (

%)

W i d e R e s N e t 3 2 R e m a i n i n g F L O P s (%)

 H A P - I m p l a n t
 H A P
 E i g e n D a m a g e

B a s e l i n e 9 5 . 3 0

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0
8 7
8 8
8 9
9 0
9 1
9 2
9 3
9 4
9 5

Ac
cu

rac
y (

%)

P r e R e s N e t 2 9 R e m a i n i n g F L O P s (%)

 H A P + I m p l a n t
 H A P
 E i g e n D a m a g e
 N N S l i m m i n g

B a s e l i n e 9 4 . 3 9

Fig. 3: Comparison of accuracy with different pruning ratios among HAP+IMPLANT, HAP, NN Slimming,
EigenDamage, and DCP, on the CIFAR-10 dataset, for ResNet56, WideResNet32, and PreResNet29. (Top) Remaining
parameters in the network after pruning is used for x-axis. (Bottom) Remaining FLOPs in the network after pruning
is used for x-axis. HAP consistently outperforms EigenDamage and NN Slimming, and HAP+IMPLANT boosts
performance for moderate pruning ratios and surpasses DCP.

sensitive neurons that if pruned, would result in high
accuracy loss.

Here, we propose an alternative strategy to replace
moderately sensitive parameter groups with a low rank
Neural Implant. The basic idea is to prune insensitive lay-
ers completely, but detect the moderately sensitive layers,
and instead of completely removing all of its parameters
(which can contain some sensitive ones as discuss above),
replace them with a low rank decomposition. As an
example, a spatial convolution could be replaced with a
new point-wise convolution that has smaller parameters
and flops. One could also consider other types of low rank
decomposition (e.g. CP/Tucker decomposition, depth-
wise/separable convolution,etc). However, for simplicity
we only use a pointwise convolution implant in this paper.

After the implant, the model is fine-tuned to recover
accuracy. We denote this approach as HAP+IMPLANT,
which is schematically illustrated in Figure 1. In summary,
we use the Hessian sensitivity metric in Eq. 11, and then
we apply a Neural Implant to the most sensitive channels
to be pruned.

We have to emphasize that many prior works have in-
vestigated low-rank matrix approximation [35]. However,
existing methods for NN pruning replace all or part of

the model, irrespective of their sensitivity, whereas in
our approach we perform a targeted low-rank approxima-
tion, and only replace the sensitive parts of the model,
quantified through the Hessian in Eq. 11. We empirically
found that this approach is quite effective, especially for
moderate pruning ratios, as discussed next.

IV. RESULTS

A. Experimental Settings
For evaluating the performance of HAP, we conduct

experiments for image classification on CIFAR-10 (using
ResNet56/WideResNet32/PreResNet29/VGG16) and Ima-
geNet (using ResNet50). Our main target comparison for
HAP (without Implant) is EigenDamage, a recent second-
order pruning method. For fair comparison, we use the
same pretrained model used by EigenDamage when
available (WideResNet32 on Cifar-10), and otherwise
train the model from scratch (ResNet56, VGG16, and
PreResNet29 on Cifar-10). For all cases, we ensure
comparable baseline accuracy, and when not possible, we
report the baseline used by other methods. For comparison
we consider a wide range of pruning ratios, and consider
validation accuracy, FLOPs, and parameter size as the

metrics. The goal is to achieve higher accuracy with
lower FLOPs/parameter size.

B. HAP Results on CIFAR-10

We first start with evaluating HAP without Neural
Implant, and then discuss the specific improvement of
using Neural Implant. The results on CIFAR-10 for
different pruning ratios and various models are presented
in Figure 3. In particular, we report both the validation
accuracy versus remaining parameters after pruning, as
well as validation accuracy versus the FLOPs. For compar-
ison, we also plot the performance of NN slimming [31],
EigenDamage [41] and DCP [52] for different pruning
ratios. For all the points that we compare, HAP achieves
higher accuracy than EigenDamage, even for cases with
fewer parameters/FLOPs. We generally observe that the
difference between HAP and EigenDamage is more
noticeable for higher pruning ratios (i.e., fewer remaining
parameter). This is expected, since small amounts of
pruning does not lead to significant accuracy degradation,
while higher pruning ratios are more challenging. In
particular, when the parameter remaining percentage is
around 35% (i.e., 65% of the parameters are pruned),
HAP achieves 93.2% accuracy, which is 1.24% higher
than EigenDamage, with fewer FLOPs (34.0% versus
38.7% for EigenDamage). We observe a similar trend
on WideResNet32, where HAP consistently outperforms
EigenDamage.

We also plot the performance of DCP, which is not
a second-order method, but is known to achieve good
pruning accuracy. HAP achieves higher accuracy as
compared to NN slimming, and comparable accuracy
to DCP. As for the latter, the benefit of HAP is that we
do not need to perform any greedy channel selection and
the entire Hessian calculation and channel selection is
performed in one pass.1

For PreResNet29, we also compare with NN Slim-
ming [31], to compare with prior reported results on this
model. We observe that HAP achieves up to 6% higher
accuracy as compared to NN Slimming method, and
slightly higher accuracy as compared to EigenDamage. It
is interesting to note that HAP can keep the accuracy the
same as baseline, up to pruning 70% of the parameters
(corresponding to 30% remaining parameters in Figure 3).

We also present results on VGG16 and compare
with other works in the literature, including GAL [30],

1We also tried to test DCP on other models but the code base is
old and we were not able to use it for WideResNet32 or PreResNet29.
As such we considered other pruning methods, besides EigenDamage,
for comparison with those models.

Table I: Comparison between HAP and other pruning
methods on CIFAR-10. Here, VGG16 denotes the baseline
used in HRank [28], and VGG16-HAP denotes the
baseline used by HAP method. As one can see, HAP
consistently outperforms other pruning methods, even
though its pruned models have fewer parameters (Param.)
and FLOPs.

Method Acc.(%) Param.(%) FLOPs(%)

VGG16 93.96 100.0 100.0
VGG16-HAP 93.88 100.0 100.0

L1[27] 93.40 36.0 65.7
SSS[20] 93.02 26.2 58.4
VarP[51] 93.18 26.7 60.9
HRank[28] 93.43 17.1 46.5
GAL-0.05[30] 92.03 22.4 60.4
HRank[28] 92.34 17.9 34.7
GAL-0.1[30] 90.73 17.8 54.8
HAP 93.66 10.1 29.7

HRank[28] 91.23 8.0 23.5
HAP 93.37 5.1 20.3

HAP 91.22 1.6 7.5

HRank [28], and VarP [51], as reported in Table I. Here,
we consistently achieve higher accuracy. In particular,
HAP with 29.7% FLOPs and 10.1% parameters achieves
the highest accuracy (despite using a pretrained model
with lower baseline accuracy). Similarly, HAP with 20.3%
FLOPs and 5.1% parameters achieves 93.37% accuracy,
with less than 2× FLOPs and 3× fewer parameters as
compared to HRank in the same block. For extreme
pruning, HAP achieves 91.22% accuracy with only 1.6%
of the parameters remaining. To the best of our knowledge,
this level of aggressive pruning, while maintaining such
high accuracy, has not been reported in the literature.

Visualizing HAP Channel Selection: It is interesting
to visualize how HAP performs channel selection using
the second-order sensitivity discussed in Sec. III-B. To
this end, we plot the second-order sensitivity of different
channels in the sixth convolution layer of WideResNet32
in Figure 4 (blue line). For each channel, we add a binary
bar chart which is shown if the channel is present only if
the corresponding channel is not pruned. We can clearly
see that layers with lower sensitivity (lower values in the
blue line) are pruned, and vice versa. Similar results can
be seen for other models (see Appendix A).

0 5 10 15 20 25 30 35 40 45 50 55 60
Channel #

10
10

10
9

10
8

10
7

10
6

10
5

C
ha

nn
el

 S
en

si
tiv

ity

The Channel Sensitivity of 6-th Layer of WideResNet32

Fig. 4: Illustration of sensitivity of the sixth convolution layer of WideResNet32 (corresponding to 5% parameter
remaining in Figure 3). The x-axis denotes the channel index, and the blue line denotes the corresponding second-
order sensitivity computed using Eq. 11. The red bar is added to channels that remain unpruned with the HAP
method. These correspond to sensitive channels that have large values on the blue line. The corresponding results
for ResNet56 and PreResNet29 are presented in Appendix A.

C. Neural Implant Results on CIFAR-10

Despite HAP’s competitive results as compared to prior
pruning methods, it still has lower accuracy as compared
to baseline. This is known problem and shortcoming of
structured pruning methods. We propose to use a low
rank Neural Implant to address this problem, and find
it particularly helpful for moderate levels of structured
pruning. In particular, for the CNNs tested in this paper
we replace sensitive 3 × 3 spatial convolutions with a
pointwise convolution. This replacement still reduces the
number of parameters for the 3 × 3 convolution by a
factor of 9×.

We repeated the previous experiments with this ap-
proach, and report the results in Figure 3 (blue line). We
observe that HAP+IMPLANT consistently achieves better
performance than HAP for both the same parameter size
(first row) and the same FLOPs (second row), which
also surpasses the performance of DCP [52] that has a
competitive result with HAP.

For some cases, the performance of the pruned network
slightly exceeds the baseline accuracy. In particular,
for ResNet56, we observe up to 1.5% higher accuracy
as compared to HAP, and up to 2% higher accuracy
as compared to EigenDamage. We observe a simi-
lar trend for both WideResNet32/PreResNet29, where
HAP+IMPLANT consistently performs better than both
HAP and EigenDamage.

It should be noted that the gains from HAP+IMPLANT

diminish for higher pruning ratios (around 20% remaining
parameters for ResNet56, and around 30% remaining
for WideResNet32/PreResNet29). This is expected, since
there is a trade-off associated with adding the Neural
Implant. While the implant helps reduce the information
loss from completely removing sensitive channels, it does

so by adding additional parameters. As such, we actually
have to enforce a larger pruning ratio to meet a target
model size. As the channels are sorted based on their
sensitivity (from Eq. 11), this means that we have to
prune the next set of more sensitive channels to satisfy
the target. However, if such channels have much higher
sensitivity, then that can actually degrade the performance.
This is what happens for extreme pruning cases, since
most of the remaining parameters will be highly sensitive;
and, as such, the gains achieved by the Neural Implant
will not be enough.

In addition to parameter percentage, we also compare
HAP+IMPLANT results based on remaining FLOPs with
other methods reported in the literature. This is shown
in Table II. As one can see, with a high remaining
FLOPs percentage, HAP+IMPLANT can reach 93.55%
accuracy with only 0.33% degradation as compared with
the corresponding pretrained baseline model. It should be
noted that state-of-the-art methods such as FPGM [15]
and LFPC [13] requires 6.4% more FLOPs to reach
comparable performance. Moreover, when the target
percentage of remaining FLOPs is small, HAP+IMPLANT

only incurs 0.96% accuracy degradation as compared
with 2.31% for HAP and 2.54% for HRank [28] (with
comparable FLOPs and baseline accuracy).

D. HAP Results on ImageNet

We also test HAP on ImageNet using ResNet50,
and report the results in Table III. We compare with
several previous structured pruning methods including
SSS [20], CP [16], ThiNet [32], and HRank [28]. It
should be noted that the accuracy of our pretrained
baseline is slightly lower than HRank, yet our HAP
method still achieves higher accuracy. For instance, in
all cases, HAP achieves higher accuracy with smaller

Table II: Comparison of FLOPs and accuracy on CIFAR-
10 using ResNet56 for different pruning methods. We
report the baseline accuracy used in each work, as
well as the corresponding final accuracy after pruning.
For ease of comparison, we also report the accuracy
drop (Acc. ↓) w.r.t. each baseline. As one can see, HAP
and HAP+IMPLANT consistently outperform other work
reported in the literature.

Method Baseline acc. Final acc. Acc. ↓ FLOPs (%)

CP[16] 92.80 91.80 1.00 50.0
AMC[14] 92.80 91.90 0.90 50.0
FPGM[15] 93.59 93.26 0.33 47.4
LFPC[13] 93.59 93.24 0.35 47.1
HAP+IMPLANT 93.88 93.55 0.33 40.7

GAL-0.8[30] 93.26 90.36 2.90 39.8
HRank[28] 93.26 90.72 2.54 25.9
HAP 93.88 91.57 2.31 21.0
HAP+IMPLANT 93.88 92.92 0.96 23.9

number of parameters as compared to all prior work
reported on ResNet50. The highest difference corresponds
to 34.74% remaining parameters (i.e., pruning 65.26% of
parameters), where HAP has 2% higher Top-1 accuracy
with 19.26% fewer parameters as compared to HRank
(although for fairness our FLOPs are slightly larger). We
observe a consistent trend even for high pruning ratios.
For example, with 20.47% remaining parameters, HAP
still has more than 2% higher accuracy as compared to
HRank. We should also note that despite using second-
order information, HAP is quite efficient, and the end-to-
end Hessian calculations were completed three minutes
on a single RTX-6000 GPU.

E. Ablation Study
We conducted several different ablation experiments to

study the effectiveness of the second-order based metric
in HAP. For all the experiments, we use ResNet56 on
CIFAR-10.

One of the main components of HAP is the Hessian
trace metric used to sort different channels to be pruned.
In particular, this ordering sorts the channels from
the least sensitive to most sensitive, computed based
on Eq. 11. In the first ablation study, we use the reverse
order of what HAP recommends, and denote this method
as R-HAP. The results are shown in Table IV. It can be
clearly observed that for all cases R-HAP achieves lower
accuracy as compared to HAP (more than 3% for the
case with 35.50% remaining parameters). In the second
ablation experiment, we use a random order for pruning
the layers, irrespective of their second-order sensitivity,

Table III: Comparison between HAP, HAP+IMPLANT,
and other state-of-the-art pruning methods on ImageNet.
Here, ResNet50 is the baseline used in HRank [28]’s table,
while ResNet50-HAP is the baseline used by HAP.

Method Top-1 Param.(%) FLOPs(%)

ResNet50 76.15 100.0 100.0
ResNet50-HAP 75.62 100.0 100.0

SSS-32[20] 74.18 72.94 68.95
CP[16] 72.30 - 66.75
GAL-0.5[30] 71.95 83.14 56.97
HRank[28] 74.98 63.33 56.23
HAP 75.12 55.41 66.18
HAP+IMPLANT 75.36 53.74 55.49

GDP-0.6[29] 71.19 - 45.97
GDP-0.5[29] 69.58 - 38.39
SSS-26[20] 71.82 61.18 56.97
GAL-1[30] 69.88 57.53 38.63
GAL-0.5-joint[30] 71.82 75.73 44.99
HRank[28] 71.98 54.00 37.90
HAP 74.00 34.74 40.44

ThiNet-50[32] 68.42 33.96 26.89
GAL-1-joint[30] 69.31 40.04 27.14
HRank[28] 69.10 32.43 23.96
HAP 71.18 20.47 32.85

Table IV: Ablation study on the sensitivity metric. R-
HAP denotes pruning by reversely using sensitivity in
HAP. Random is conducted by randomly allocating
channel-wise sensitivity.

Method Acc. Param.(%) FLOPs(%) Channel

R-HAP 89.77 47.48 46.98 65
Random 93.12 45.60 46.68 60
Magnitude 93.29 61.82 39.29 55
HAP 93.38 41.53 38.74 50

R-HAP 89.97 42.85 39.99 60
Random 92.21 36.01 33.99 50
Magnitude 92.99 56.15 34.97 50
HAP 93.23 35.50 33.99 45

R-HAP 88.83 27.15 30.61 50
Random 90.95 29.64 31.32 40
Magnitude 92.45 47.28 28.97 42.2
HAP 92.81 31.08 28.85 40

R-HAP 88.18 23.34 28.04 45
Random 90.18 25.33 25.69 30
Magnitude 91.65 38.25 22.93 35
HAP 92.06 22.05 22.86 31

and denote this as Random in Table IV. Similar to the
previous case, the random ordering achieves consistently
lower accuracy as compared to HAP. In addition, its
results exhibit a larger variance.

Another important ablation study is to compare the

performance of the Hessian-based pruning with the
commonly used magnitude based methods that use
variants of ‖w‖22/p (denoted as Magnitude in Table IV).
To make a fair comparison, we set the FLOPs of the model
after pruning to be the same for HAP and the magnitude
based pruning (and slightly higher for the latter to be fair).
The results are reported in Table IV. As the results show,
HAP achieves the same accuracy as magnitude based
pruning but with much fewer parameters (i.e., higher
pruning ratio). In particular, for pruning with 22.53% of
FLOPs (last row of Table IV), HAP achieves 92.06%
which is almost the same as magnitude based pruning
(91.65%). However, HAP achieves this accuracy with
only 21.01% of the parameters remaining, as compared
to 38.25%, which is quite a significant difference. This
is expected, as HAP’s performance was higher than the
different magnitude based results reported in the literature,
for both the CIFAR-10 and ImageNet tests of the previous
subsections (Sec. IV-B and IV-D, respectively).

V. CONCLUSION

Existing structured-pruning methods often result in
significant accuracy degradation for moderate pruning
levels. To address this, we propose HAP, a new second-
order structured-pruning method that uses the Hessian
trace as the sensitivity metric for pruning a NN model. We
also proposed a new Neural Implant approach that uses
HAP’s sensitivity metric to perform targeted replacement
of sensitive neuron’s with a light-weight low rank implant.
The main intuition is to prune insensitive components
and to use the Neural Implant for moderately sensitive
components., instead of completely pruning them. We
performed extensive empirical tests using multiple NN
models. We compared with several prior works, including
both the second-order based structured pruning method
of EigenDamage, as well as several magnitude-based
pruning methods. HAP consistently achieved higher ac-
curacy with fewer parameters. Specifically, HAP achieves
94.3% accuracy (< 0.1% degradation) on PreResNet29
(CIFAR-10), with more than 70% of parameters pruned.
In comparison to EigenDamage, we achieve up to 1.2%
higher accuracy with fewer parameters and FLOPs.
Moreover, for ResNet50 HAP achieves 75.1% top-1
accuracy (0.5% degradation) on ImageNet, after pruning
almost half of the parameters. In comparison to the prior
state-of-the-art of HRank, we achieve up to 2% higher
accuracy with fewer parameters and FLOPs. We have
open sourced our implementation available at [1].

REFERENCES

[1] https://github.com/yaozhewei/hap.git, Dec. 2021.

[2] Haim Avron and Sivan Toledo. Randomized algorithms
for estimating the trace of an implicit symmetric positive
semi-definite matrix. Journal of the ACM (JACM), 58(2):8,
2011.

[3] Zhaojun Bai, Gark Fahey, and Gene Golub. Some
large-scale matrix computation problems. Journal of
Computational and Applied Mathematics, 74(1-2):71–89,
1996.

[4] Aydin Buluc and John R Gilbert. Challenges and advances
in parallel sparse matrix-matrix multiplication. In 2008
37th International Conference on Parallel Processing,
pages 503–510. IEEE, 2008.

[5] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang,
and Song Han. Once-for-all: Train one network and
specialize it for efficient deployment. arXiv preprint
arXiv:1908.09791, 2019.

[6] Xin Dong, Shangyu Chen, and Sinno Pan. Learning to
prune deep neural networks via layer-wise optimal brain
surgeon. In Advances in Neural Information Processing
Systems, pages 4857–4867, 2017.

[7] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami,
Michael W. Mahoney, and Kurt Keutzer. HAWQ-V2:
Hessian aware trace-weighted quantization of neural
networks. Advances in neural information processing
systems, 2020.

[8] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W.
Mahoney, and Kurt Keutzer. HAWQ: Hessian AWare
Quantization of neural networks with mixed-precision. In
The IEEE International Conference on Computer Vision
(ICCV), October 2019.

[9] Trevor Gale, Erich Elsen, and Sara Hooker. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

[10] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,
Xiangyu Yue, Peter Jin, Sicheng Zhao, and Kurt Keutzer.
SqueezeNext: Hardware-aware neural network design.
Workshop paper in CVPR, 2018.

[11] Babak Hassibi and David G Stork. Second order
derivatives for network pruning: Optimal brain surgeon.
In Advances in neural information processing systems,
pages 164–171, 1993.

[12] Babak Hassibi, David G Stork, and Gregory J Wolff.
Optimal brain surgeon and general network pruning. In
IEEE international conference on neural networks, pages
293–299. IEEE, 1993.

[13] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang
Zhang, and Yi Yang. Learning filter pruning criteria
for deep convolutional neural networks acceleration. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2009–2018, 2020.

[14] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li,
and Song Han. Amc: Automl for model compression
and acceleration on mobile devices. In Proceedings of
the European Conference on Computer Vision (ECCV),
pages 784–800, 2018.

[15] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.

Filter pruning via geometric median for deep convolu-
tional neural networks acceleration. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4340–4349, 2019.

[16] Yihui He, Xiangyu Zhang, and Jian Sun. Channel
pruning for accelerating very deep neural networks. In
Proceedings of the IEEE International Conference on
Computer Vision, pages 1389–1397, 2017.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling
the knowledge in a neural network. Workshop paper in
NIPS, 2014.

[18] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for
mobilenetv3. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1314–1324, 2019.

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applica-
tions. arXiv preprint arXiv:1704.04861, 2017.

[20] Zehao Huang and Naiyan Wang. Data-driven sparse struc-
ture selection for deep neural networks. In Proceedings
of the European conference on computer vision (ECCV),
pages 304–320, 2018.

[21] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Quantized neural networks:
Training neural networks with low precision weights and
activations. The Journal of Machine Learning Research,
18(1):6869–6898, 2017.

[22] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[23] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and
Dmitry Kalenichenko. Quantization and training of neural
networks for efficient integer-arithmetic-only inference.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2704–2713, 2018.

[24] Raghuraman Krishnamoorthi. Quantizing deep convo-
lutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018.

[25] Yann LeCun, John S Denker, and Sara A Solla. Optimal
brain damage. In Advances in neural information
processing systems, pages 598–605, 1990.

[26] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. Snip: Single-shot network pruning based on
connection sensitivity. arXiv preprint arXiv:1810.02340,
2018.

[27] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710, 2016.

[28] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:

Filter pruning using high-rank feature map. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1529–1538, 2020.

[29] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu,
Feiyue Huang, and Baochang Zhang. Accelerating
convolutional networks via global & dynamic filter
pruning. In IJCAI, pages 2425–2432, 2018.

[30] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang
Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang, and
David Doermann. Towards optimal structured cnn pruning
via generative adversarial learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2790–2799, 2019.

[31] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In
Proceedings of the IEEE International Conference on
Computer Vision, pages 2736–2744, 2017.

[32] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet:
A filter level pruning method for deep neural network
compression. In Proceedings of the IEEE international
conference on computer vision, pages 5058–5066, 2017.

[33] Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu,
and Yunxin Liu. Fast hardware-aware neural architecture
search. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops,
pages 692–693, 2020.

[34] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian
Sun. Shufflenet v2: Practical guidelines for efficient cnn
architecture design. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 116–131,
2018.

[35] M. W. Mahoney. Randomized algorithms for matrices
and data. Foundations and Trends in Machine Learning.
NOW Publishers, Boston, 2011.

[36] Asit Mishra and Debbie Marr. Apprentice: Using knowl-
edge distillation techniques to improve low-precision
network accuracy. arXiv preprint arXiv:1711.05852,
2017.

[37] Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin.
Lookahead: a far-sighted alternative of magnitude-based
pruning. arXiv preprint arXiv:2002.04809, 2020.

[38] Antonio Polino, Razvan Pascanu, and Dan Alistarh.
Model compression via distillation and quantization.
arXiv preprint arXiv:1802.05668, 2018.

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. MobileNetV2:
Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4510–4520, 2018.

[40] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnasnet:
Platform-aware neural architecture search for mobile. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2820–2828, 2019.

[41] Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong

Zhang. Eigendamage: Structured pruning in the kronecker-
factored eigenbasis. arXiv preprint arXiv:1905.05934,
2019.

[42] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan
Wang, Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda,
Yangqing Jia, and Kurt Keutzer. FBNet: Hardware-aware
efficient convnet design via differentiable neural architec-
ture search. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 10734–
10742, 2019.

[43] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and
Jian Cheng. Quantized convolutional neural networks for
mobile devices. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4820–
4828, 2016.

[44] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran.
Autoprune: Automatic network pruning by regularizing
auxiliary parameters. In Advances in Neural Information
Processing Systems, pages 13681–13691, 2019.

[45] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang,
Alec Go, Mark Sandler, Vivienne Sze, and Hartwig Adam.
Netadapt: Platform-aware neural network adaptation for
mobile applications. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 285–300,
2018.

[46] Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W.
Mahoney. PyHessian: Neural networks through the lens
of the Hessian. arXiv preprint arXiv:1912.07145, 2019.

[47] Zhewei Yao, Amir Gholami, Sheng Shen, Kurt Keutzer,
and Michael W Mahoney. Adahessian: An adaptive
second order optimizer for machine learning. arXiv
preprint arXiv:2006.00719, 2020.

[48] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong
Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan
Kautz. Dreaming to distill: Data-free knowledge transfer
via deepinversion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8715–8724, 2020.

[49] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin,
and Larry S Davis. Nisp: Pruning networks using neuron
importance score propagation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 9194–9203, 2018.

[50] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian
Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6848–6856, 2018.

[51] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao,
Wenjun Zhang, and Qi Tian. Variational convolutional
neural network pruning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2780–2789, 2019.

[52] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing
Liu, Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui

Zhu. Discrimination-aware channel pruning for deep
neural networks. In Advances in Neural Information
Processing Systems, pages 875–886, 2018.

150 200 250 300 350 400 450 500
Iteration #

10 6

10 5

10 4

10 3

10 2

He
ss

ia
n

ba
se

d
se

ns
iti

vi
ty

11-th channel in layer 16 of ResNet56

150 200 250 300 350 400 450 500
Iteration #

10 7

10 6

10 5

10 4

10 3

He
ss

ia
n

ba
se

d
se

ns
iti

vi
ty

20-th channel in layer 32 of ResNet56

150 200 250 300 350 400 450 500
Iteration #

10 7

10 6

10 5

10 4

10 3

He
ss

ia
n

ba
se

d
se

ns
iti

vi
ty

52-th channel in layer 46 of ResNet56

Fig. 5: The convergence of Hessian-based sensitivity throughout the Hutchinson iterations, for different channels
of ResNet56. Here, the x-axis is the Hutchinson iteration, and the y-axis is the approximation for the sensitivity
corresponding to Eq. 11. As one can see, the approximation converges after about 300 iterations.

APPENDIX

Here we present the details of the experiments performed in the paper. For model pretraining on CIFAR-10,
we use the same setting as EigenDamage [41]. To finetune the pruned model for performance improvement, we
use SGD with momentum 0.9 and train the compressed model for 160 epochs for CIFAR-10 and 120 epochs for
ImageNet. The initial learning rate is set as 2e-2 for CIFAR-10, 1e-3 for ImageNet, and reduce by one-tenth twice
at half and 3/4 of the full epoch. For CIFAR-10, we use a batch size of 64 and weight decay of 4e-4, and for
ImageNet we use a batch size of 128 and weight decay of 1e-4. We also set a pruning ratio limit for each layer,
following [41].

As for Neural Implant, we select a fixed neural implant ratio of 0.2, meaning that 20% of the pruned 3x3
convolution kernels are replaced by 1x1 convolution kernels.

We have open sourced our implementation available at [1].
As discussed in Section III, we compute the sensitivity based on the trace of the Hessian as presented in Eq. 11. This

approximation can be computed without explicitly forming the Hessian operator, by using the Hutchinson method [2, 3].
In this approach, the application of the Hessian to a random vector is calculated through backpropogation (similar
to how gradient is backpropagated) [46]. In particular, for a given random vector v ∈ Rp with i.i.d. components, we
can show:

Tr(H) = E[vTHv]. (12)

See [46, 47] for details and discussion. We can directly use this identity to compute the sensitivity in Eq. 11:

Trace(Hp,p)

2p
‖wp‖22 =

1

2p
‖wp‖22E[vTHv]. (13)

Here, note that the norm of the parameters is a constant. One can prove that for a PSD operator, this expectation
converges to the actual trace. To illustrate this empirically, we have plotted the convergence for this sensitivity
metric for different channels of ResNet56. See Figure 5. As one can see, after roughly 300 iterations we get a very
good approximation.

Here, we show the distribution of pruning for different channels of ResNet56, and PreResNet29. See Figure 6.
As one can see, HAP only prunes insensitive channels, and keeps channels with high sensitivity (computed based
on Eq. 11).

0 5 10 15 20 25 30 35 40 45 50 55 60
Channel #

10 6

10 5

10 4

Ch
an

ne
l S

en
sit

iv
ity

The Channel Sensitivity of 45-th Layer of ResNet56

0 5 10 15 20 25 30 35 40 45 50 55 60
Channel #

10 6

10 5

10 4

Ch
an

ne
l S

en
sit

iv
ity

The Channel Sensitivity of 7-th Layer of PreResNet29

Fig. 6: Illustration of sensitivity of the 45th convolution layer of ResNet56 and the 7th convolution layer of
PreResNet29. The x-axis denotes the channel index, and the blue line denotes the corresponding second-order
sensitivity computed using Eq. 11. The red bar is added to channels that remain unpruned with the HAP method.
As one can see, these correspond to sensitive channels that have large values on the blue line. The corresponding
result for WideResNet32 is shown in Figure 4 in main text.

	I Introduction
	II Related work
	III Methodology
	III-A Background
	III-B Hessian-aware Pruning
	III-C Hessian-aware Neural Implant

	IV Results
	IV-A Experimental Settings
	IV-B HAP Results on CIFAR-10
	IV-C Neural Implant Results on CIFAR-10
	IV-D HAP Results on ImageNet
	IV-E Ablation Study

	V Conclusion
	Appendix

