arXiv:2001.00281v1 [cs.CV] 1 Jan 2020

ZeroQ: A Novel Zero Shot Quantization Framework

Yaohui Cai*!, Zhewei Yao*2, Zhen Dong,”"2
Amir Gholami?, Michael W. Mahoney?, Kurt Keutzer?
IPeking University; 2University of California, Berkeley

{zheweiy, zhendong, amirgh, mahoneymw, and keutzer} @berkeley.edu caiyaohui @pku.edu.cn

Abstract—Quantization is a promising approach for reducing
the inference time and memory footprint of neural networks.
However, most existing quantization methods require access to
the original training dataset for retraining during quantization.
This is often not possible for applications with sensitive or
proprietary data, e.g., due to privacy and security concerns. Ex-
isting zero-shot quantization methods use different heuristics to
address this, but they result in poor performance, especially when
quantizing to ultra-low precision. Here, we propose ZEROQ, a
novel zero-shot quantization framework to address this. ZEROQ
enables mixed-precision quantization without any access to the
training or validation data. This is achieved by optimizing for
a Distilled Dataset, which is engineered to match the statistics
of batch normalization across different layers of the network.
ZEROQ supports both uniform and mixed-precision quantization.
For the latter, we introduce a novel Pareto frontier based method
to automatically determine the mixed-precision bit setting for
all layers, with no manual search involved. We extensively test
our proposed method on a diverse set of models, including
ResNet18/50/152, MobileNetV2, ShuffleNet, SqueezeNext, and
InceptionV3 on ImageNet, as well as RetinaNet-ResNetS0 on the
Microsoft COCO dataset. In particular, we show that ZEROQ can
achieve 1.71% higher accuracy on MobileNetV2, as compared to
the recently proposed DFQ [32] method. Importantly, ZEROQ
has a very low computational overhead, and it can finish the
entire quantization process in less than 30s (0.5% of one epoch
training time of ResNet50 on ImageNet). We have open-sourced
the ZEROQ framework'.

I. INTRODUCTION

Despite the great success of deep Neural Network (NN)
models in various domains, the deployment of modern NN
models at the edge has been challenging due to their pro-
hibitive memory footprint, inference time, and/or energy con-
sumption. With the current hardware support for low-precision
computations, quantization has become a popular procedure
to address these challenges. By quantizing the floating point
values of weights and/or activations in a NN to integers, the
model size can be shrunk significantly, without any modifica-
tion to the architecture. This also allows one to use reduced-
precision Arithmetic Logic Units (ALUs) which are faster and
more power-efficient, as compared to floating point ALUs.
More importantly, quantization reduces memory traffic vol-
ume, which is a significant source of energy consumption [15].

However, quantizing a model from single precision to low-
precision often results in significant accuracy degradation. One
way to alleviate this is to perform the so-called quantization-
aware fine-tuning [5, 18, 34, 42, 45, 46] to reduce the

*Equal contribution.
Thttps://github.com/amirgholami/ZeroQ

performance gap between the original model and the quan-
tized model. Basically, this is a retraining procedure that is
performed for a few epochs to adjust the NN parameters
to reduce accuracy drop. However, quantization-aware fine-
tuning can be computationally expensive and time-consuming.
For example, in online learning situations, where a model
needs to be constantly updated on new data and deployed
every few hours, there may not be enough time for the fine-
tuning procedure to finish. More importantly, in many real-
world scenarios, the training dataset is sensitive or proprietary,
meaning that it is not possible to access the dataset that was
used to train the model. Good examples are medical data, bio-
metric data, or user data used in recommendation systems.

To address this, recent work has proposed post-training
quantization [3, 19, 32, 44], which directly quantizes NN
models without fine-tuning. However, as mentioned above,
these methods result in non-trivial performance degradation,
especially for low-precision quantization. Furthermore, previ-
ous post-training quantization methods usually require limited
(unlabeled) data to assist the post-training quantization. How-
ever, for cases such as MLaaS (e.g., Amazon AWS and Google
Cloud), it may not be possible to access any of the training
data from users. An example application case is health care
information which cannot be uploaded to the cloud due to
various privacy issues and/or regulatory constraints. Another
shortcoming is that often post-quantization methods [3, 30, 44]
only focus on standard NNs such as ResNet [13] and Incep-
tionV3 [38] for image classification, and they do not consider
more demanding tasks such as object detection.

In this work, we propose ZEROQ, a novel zero-shot quan-
tization scheme to overcome the issues mentioned above.
In particular, ZEROQ allows quantization of NN models,
without any access to any training/validation data. It uses a
novel approach to automatically compute a mixed-precision
configuration without any expensive search. In particular, our
contributions are as follows.

« We propose an optimization formulation to generate Dis-
tilled Data, i.e., synthetic data engineered to match the
statistics of batch normalization layers. This reconstruction
has a small computational overhead. For example, it only
takes 3s (0.05% of one epoch training time) to generate 32
images for ResNet50 on ImageNet on an 8-V100 system.

e« We use the above reconstruction framework to perform
sensitivity analysis between the quantized and the original
model. We show that the Distilled Data matches the sensi-
tivity of the original training data (see Figure 1 and Table IV

Original

{_Model

128 128

64 6464 6464

’Qm\nl ized |
8th layer |

128 128
conv6/T

convl conv2/3 conv4/5

Quantized
64 64 64 64 64 t0 4 b

S
512 512
conv16/17

FC&softmax

Fig. 1: Illustration of sensitivity computation for ResNet18 on ImageNet. The figure shows how we compute the sensitivity
of the 8-th layer when quantized to 4-bit (Q2g(4)) according to Eq. 2. We feed Distilled Data into the full-precision ResNet18
(top), and the same model except quantizing the 8-th layer to 4-bit (bottom) receptively. The sensitivity of the 8-th layer when
quantized to 4-bit Qg(4) is defined as the KL-divergence between the output of these two models. For simplicity, we omit the
residual connections here, although the same analysis is applied to the residual connections in ZEROQ.

for details). We then use the Distilled Data, instead of
original/real data, to perform post-training quantization. The
entire sensitivity computation here only costs 12s (0.2% of
one epoch training time) in total for ResNet50. Importantly,
we never use any training/validation data for the entire
process.

o Our framework supports both uniform and mixed-precision
quantization. For the latter, we propose a novel automatic
precision selection method based on a Pareto frontier opti-
mization (see Figure 4 for illustration). This is achieved by
computing the quantization sensitivity based on the Distilled
Data with small computational overhead. For example, we
are able to determine automatically the mixed-precision
setting in under 14s for ResNet50.

We extensively test our proposed ZEROQ framework on a wide

range of NNs for image classification and object detection

tasks, achieving state-of-the-art quantization results in all
tests. In particular, we present quantization results for both
standard models (e.g., ResNet18/50/152 and InceptionV3) and
efficient/compact models (e.g., MobileNetV2, ShuffleNet, and

SqueezeNext) for image classification task. Importantly, we

also test ZEROQ for object detection on Microsoft COCO

dataset [28] with RetinaNet [27]. Among other things, we
show that ZEROQ achieves 1.71% higher accuracy on Mo-

bileNetV2 as compared to the recently proposed DFQ [32]

method.

II. RELATED WORK

Here we provide a brief (and by no means extensive)
review of the related work in literature. There is a wide range

of methods besides quantization which have been proposed
to address the prohibitive memory footprint and inference
latency/power of modern NN architectures. These methods are
typically orthogonal to quantization, and they include efficient
neural architecture design [9, 16, 17, 36, 43], knowledge
distillation [14, 35], model pruning [11, 24, 29], and hardware
and NN co-design [9, 21]. Here we focus on quantization [2, 5,
6, 8, 23, 34, 41, 42, 45, 46, 48], which compresses the model
by reducing the bit precision used to represent parameters
and/or activations. An important challenge with quantization
is that it can lead to significant performance degradation,
especially in ultra-low bit precision settings. To address this,
existing methods propose quantization-aware fine-tuning to
recover lost performance [4, 18, 20]. Importantly, this requires
access to the full dataset that was used to train the original
model. Not only can this be very time-consuming, but often
access to training data is not possible.

To address this, several papers focused on developing
post-training quantization methods (also referred to as post-
quantization), without any fine-tuning/training. In particular,
[19] proposes the OMSE method to optimize the Lo distance
between the quantized tensor and the original tensor. More-
over, [3] proposed the so-called ACIQ method to analytically
compute the clipping range, as well as the per-channel bit
allocation for NNs, and it achieves relatively good testing
performance. However, they use per-channel quantization for
activations, which is difficult for efficient hardware imple-
mentation in practice. In addition, [44] proposes an outlier
channel splitting (OCS) method to solve the outlier channel
problem. However, these methods require access to limited

T I T T T I T T T T LT T T T T T T T T T T T T TTTTTT
—e— GAUSSIAN
—e— DISTILLED DATA

ol il
10 F —e— TRAINING DATA [

Sensitivity for quantizing to 4-bit: Q;(4) —

1073

1 6 11 16 21 26 31

Block i—

36 41 46 51

I R EEEmmmm s N EEEEEmEm=mmmE]
W-BIT=2 [
—e— W-BIT=4 5
§ —— W-BIT=8 [
100 £ e

10! £

= E
1072 .

1073 4

1077 ¢ E

Sensitivity for quantizing to 2/4/8-bit: ;(2/4/8) —

1076 & =

1 6 11 16 21 26 31 36 41 46 51
Block i—

Fig. 2: (Left) Sensitivity of each layer in ResNet50 when quantized to 4-bit weights, measured with different kinds of data (red
for Gaussian, blue for Distilled Data, and black for training data). (Right) Sensitivity of ResNet50 when quantized to 2/4/8-bit

weight precision (measured with Distilled Data).

data to reduce the performance drop [3, 19, 22, 30, 44].

The recent work of [32] proposed Data Free Quantiza-
tion (DFQ). It further pushes post-quantization to zero-shot
scenarios, where neither training nor testing data are acces-
sible during quantization. The work of [32] uses a weight
equalization scheme [30] to remove outliers in both weights
and activations, and they achieve similar results with layer-
wise quantization, as compared to previous post-quantization
work with channel-wise quantization [20]. However, [32] their
performance significantly degrades when NNs are quantized to
6-bit or lower.

A recent concurrent paper to ours independently proposed
to use Batch Normalization statistics to reconstruct input
data [12]. They propose a knowledge-distillation based method
to boost the accuracy further, by generating input data that
is similar to the original training dataset, using the so-called
Inceptionism [31]. However, it is not clear how the latter
approach can be used for tasks such as object detection or
image segmentation. Furthermore, this knowledge-distillation
process adds to the computational time required for zero-shot
quantization. As we will show in our work, it is possible to
use batch norm statistics combined with mixed-precision quan-
tization to achieve state-of-the-art accuracy, and importantly
this approach is not limited to image classification task. In
particular, we will present results on object detection using
RetinaNet-ResNet50, besides testing ZEROQ on a wide range
of models for image classification (using ResNet18/50/152,
MobileNetV2, ShuffleNet, SqueezeNext, and InceptionV3),
We show that for all of these cases ZEROQ exceeds state-of-
the-art quantization performance. Importantly, our approach
has a very small computational overhead. For example, we
can finish ResNet50 quantization in under 30 seconds on an
8 V-100 system (corresponding to 0.5% of one epoch training
time of ResNet50 on ImageNet).

Directly quantizing all NN layers to low precision can lead

to significant accuracy degradation. A promising approach to
address this is to perform mixed-precision quantization [7, 8,
39, 40, 47], where different bit-precision is used for different
layers. The key idea behind mixed-precision quantization is
that not all layers of a convolutional network are equally “sen-
sitive” to quantization. A naive mixed-precision quantization
method can be computationally expensive, as the search space
for determining the precision of each layer is exponential in
the number of layers. To address this, [39] uses NAS/RL-
based search algorithm to explore the configuration space.
However, these searching methods can be expensive and are
often sensitive to the hyper-parameters and the initialization
of the RL based algorithm. Alternatively, the recent work
of [7, 8, 37] introduces a Hessian based method, where the
bit precision setting is based on the second-order sensitivity of
each layer. However, this approach does require access to the
original training set, a limitation which we address in ZEROQ.

III. METHODOLOGY

For a typical supervised computer vision task, we seek to
minimize the empirical risk loss, i.e.,

N
min £(0) = - ;fw(e;xn,yi),)

where 6 € R™ is the learnable parameter, f(-,-) is the loss
function (typically cross-entropy loss), (z;,y;) is the training
input/label pair, M is the NN model with L layers, and N
is the total number of training data points. Here, we assume
that the input data goes through standard preprocessing nor-
malization of zero mean (o = 0) and unit variance (o = 1).
Moreover, we assume that the model has L BN layers denoted
as BNy, BN, ..., BN,. We denote the activations before the
i-th BN layer with z; (in other words z; is the output of the
i-th convolutional layer). During inference, z; is normalized
by the running mean (j1;) and variance (02) of parameters in
the i-th BN layer (BN;), which is pre-computed during the

training process. Typically BN layers also include scaling and
bias correction, which we denote as ; and ;, respectively.

We assume that before quantization, all the NN parameters
and activations are stored in 32-bit precision and that we have
no access to the training/validation datasets. To quantize a
tensor (either weights or activations), we clip the parameters
to a range of [a,b] (a,b € R), and we uniformly discretize the
space to 2¥ — 1 even intervals using asymmetric quantization.
That is, the length of each interval will be A = Qb,:—_al
As a result, the original 32-bit single-precision values are
mapped to unsigned integers within the range of [0,2% — 1].
Some work has proposed non-uniform quantization schemes
which can capture finer details of weight/activation distribu-
tion [10, 33, 42]. However, we only use asymmetric uniform
quantization, as the non-uniform methods are typically not
suitable for efficient hardware execution.

The ZEROQ framework supports both fixed-precision and
mixed-precision quantization. In the latter scheme, different
layers of the model could have different bit precisions (dif-
ferent k). The main idea behind mixed-precision quantization
is to keep more sensitive layers at higher precision, and more
aggressively quantize less sensitive layers, without increasing
overall model size. As we will show later, this mixed-precision
quantization is key to achieving high accuracy for ultra-low
precision settings such as 4-bit quantization. Typical choices
for k for each layer are {2,4,8} bit. Note that this mixed-
precision quantization leads to exponentially large search
space, as every layer could have one of these bit precision
settings. It is possible to avoid this prohibitive search space
if we could measure the sensitivity of the model to the
quantization of each layer [7, 8, 37]. For the case of post-
training quantization (i.e. without fine-tuning), a good sensitiv-
ity metric is to use KullbackLeibler (KL) divergence between
the original model and the quantized model, defined as:

Naist

k) = 1 > KLIMO:), M@ (kbinia)). @)

where 2;(k) measures how sensitive the i-th layer is when
quantized to k-bit, and éi(k-bit) refers to quantized model pa-
rameters in the i-th layer with &-bit precision. If ;(k) is small,
the output of the quantized model will not significantly deviate
from the output of the full precision model when quantizing
the i-th layer to k-bits, and thus the i-th layer is relatively
insensitive to k-bit quantization, and vice versa. This process
is schematically shown in Figure 1 for ResNetl8. However,
an important problem is that for zero-shot quantization we do
not have access to the original training dataset z; in Eq. 2.
We address this by “distilling” a synthetic input data to match
the statistics of the original training dataset, which we refer
to as Distilled Data. We obtain the Distilled Data by solely
analyzing the trained model itself, as described below.

A. Distilled Data

For zero-shot quantization, we do not have access to any of
the training/validation data. This poses two challenges. First,

we need to know the range of values for activations of each
layer so that we can clip the range for quantization (the [a, b]
range mentioned above). However, we cannot determine this
range without access to the training dataset. This is a problem
for both uniform and mixed-precision quantization. Second,
another challenge is that for mixed-precision quantization, we
need to compute {2; in Eq. 2, but we do not have access
to training data x;. A very naive method to address these
challenges is to create a random input data drawn from a
Gaussian distribution with zero mean and unit variance and
feed it into the model. However, this approach cannot capture
the correct statistics of the activation data corresponding to the
original training dataset. This is illustrated in Figure 2 (left),
where we plot the sensitivity of each layer of ResNet50 on
ImageNet measured with the original training dataset (shown
in black) and Gaussian based input data (shown in red). As one
can see, the Gaussian data clearly does not capture the correct
sensitivity of the model. For instance, for the first three layers,
the sensitivity order of the red line is actually the opposite of
the original training data.

Fig. 3: Visualization of Gaussian data (left) and Distilled Data
(right). More local structure can be seen in our Distilled Data
that is generated according to Algorithm 1.

To address this problem, we propose a novel method to
“distill” input data from the NN model itself, i.e., to generate
synthetic data carefully engineered based on the properties
of the NN. In particular, we solve a distillation optimization
problem, in order to learn an input data distribution that best
matches the statistics encoded in the BN layer of the model.
In more detail, we solve the following optimization problem:

L
min Y |17 — pill3 + 1167 — o3, 3)
=0

where z” is the reconstructed (distilled) input data, and
wi /o are the mean/standard deviation of the Distilled Data’s
distribution at layer ¢, and pu;/o; are the corresponding
mean/standard deviation parameters stored in the BN layer
at layer 7. In other words, after solving this optimization
problem, we can distill an input data which, when fed into
the network, can have a statistical distribution that closely
matches the original model. Please see Algorithm 1 for a
description. This Distilled Data can then be used to address
the two challenges described earlier. First, we can use the

Algorithm 1: Generation of Distilled Data
Input: Model: M with L Batch Normalization layers
QOutput: A batch of distilled data: ="
Generate random data from Gaussian: x”
Get p;, 0; from Batch Normalization layers of M,

1€0,1, ..., L // Note that pg =0, og=1

forj=1,2,... do

Forward propagate M (z") and gather intermediate

activations
Get [i; and ¢; from intermediate activations,
tel, ..., n

Compute fip and 6 of x”
Compute the loss based on Eq. 3
Backward propagate and update x”

Distilled Data’s activation range to determine quantization
clipping parameters (the [a, b] range mentioned above). Note
that some prior work [3, 22, 44] address this by using limited
(unlabeled) data to determine the activation range. However,
this contradicts the assumptions of zero-shot quantization, and
may not be applicable for certain applications. Second, we can
use the Distilled Data and feed it in Eq. 2 to determine the
quantization sensitivity (£2;). The latter is plotted for ResNet50
in Figure 2 (left) shown in solid blue color. As one can see,
the Distilled Data closely matches the sensitivity of the model
as compared to using Gaussian input data (shown in red). We
show a visualization of the random Gaussian data as well as
the Distilled Data for ResNet50 in Figure 3. We can see that
the Distilled Data can capture fine-grained local structures.

B. Pareto Frontier

As mentioned before, the main challenge for mixed-
precision quantization is to determine the exact bit precision
configuration for the entire NN. For an L-layer model with m
possible precision options, the mixed-precision search space,
denoted as S, has an exponential size of m¥. For example
for ResNet50 with just three bit precision of {2,4,8} (i.e.,
m = 3), the search space contains 7.2 x 10?3 configurations.
However, we can use the sensitivity metric in Eq. 2 to reduce
this search space. The main idea is to use higher bit precision
for layers that are more sensitive, and lower bit precision for
layers that are less sensitive. This gives us a relative ordering
on the number of bits. To compute the precise bit precision
setting, we propose a Pareto frontier approach similar to the
method used in [7].

The Pareto frontier method works as follows. For a target
quantized model size of Siyrget, We measure the overall
sensitivity of the model for each bit precision configuration
that results in the Siqrg0: model size. We choose the bit-
precision setting that corresponds to the minimum overall
sensitivity. In more detail, we solve the following optimization
problem:

L
s.t. Z P x k; < Stav‘geh (4)

1=1

L
min qum = QZ (kz)
{ki}l ;

2 TAE . I I I E—T—
vk 1A Mixed 6-bit configuration
— @ Mixed 4-bit configuration
S 15| b
ol
A
51 .
2
=
c
(5]
v 0.5 2
°©
[
>
O
0, .|
l l l l

| | | | |
14 16 18 20 22 24
Model Size (MB)

Fig. 4: The Pareto frontier of ResNet50 on ImageNet. Each
point shows a mixed-precision bit setting. The x-axis shows
the resulting model size for each configuration, and the y-axis
shows the resulting sensitivity. In practice, a constraint for
model size is set. Then the Pareto frontier method chooses a
bit-precision configuration that results in minimal perturbation.
We show two examples for 4 and 6-bit mixed precision
configuration shown in red and orange. The corresponding
results are presented in Table Ia.

where k; is the quantization precision of the i-th layer, and
P; is the parameter size for the i-th layer. Note that here
we make the simplifying assumption that the sensitivity of
different layers are independent of the choice of bits for other
layers (hence (2; only depends on the bit precision for the i-th
layer).” Using a dynamic programming method we can solve
the best setting with different S;q,4e¢ together, and then we
plot the Pareto frontier. An example is shown in Figure 4 for
ResNet50 model, where the x-axis is the model size for each
bit precision configuration, and the y-axis is the overall model
perturbation/sensitivity. Each blue dot in the figure represents
a mixed-precision configuration. In ZEROQ, we choose the
bit precision setting that has the smallest perturbation with a
specific model size constraint.

Importantly, note that the computational overhead of com-
puting the Pareto frontier is O(mL). This is because we
compute the sensitivity of each layer separately from other
layers. That is, we compute sensitivity ; (i = 1,2, ..., L) with
respect to all m different precision options, which leads to the
O(mL) computational complexity. We should note that this
Pareto Frontier approach (including the Dynamic Program-
ming optimizer), is not theoretically guaranteed to result in
the best possible configuration, out of all possibilities in the
exponentially large search space. However, our results show

ZPlease see Section A where we describe how we relax this assumption
without having to perform an exponentially large computation for the sensi-
tivity for each bit precision setting.

that the final mixed-precision configuration achieves state-of-
the-art accuracy with small performance loss, as compared to
the original model in single precision.

TABLE I. Quantization results of ResNet50, MobileNetV2,
and ShuffleNet on ImageNet. We abbreviate quantization bits
used for weights as “W-bit” (for activations as “A-bit”), top-1
test accuracy as “Top-1.” Here, “MP” refers to mixed-precision
quantization, “No D” means that none of the data is used to
assist quantization, and “No FT” stands for no fine-tuning (re-
training). Compared to post-quantization methods OCS [44],
OMSE [19], and DFQ [32], ZEROQ achieves better accuracy.
ZEROQ' means using percentile for quantization.

(a) ResNet50

Method No D No FT W-bit A-bit Size (MB) Top-1
Baseline - - 32 32 97.49 77.72
OMSE [19] 4 32 12.28 70.06
OMSE [19] X 4 32 12.28 74.98
PACT [5] X X 4 4 12.19 76.50
ZEROQ MP 8 12.17 75.80
ZEROQ' MP 8 1217 76.08
OCS [44] X 6 6 18.46 74.80
ZEROQ MP 6 18.27 77.43
ZEROQ 8 8 2437 77.67
(b) MobileNetV2
Method No D No FT W-bit A-bit Size (MB) Top-1
Baseline - - 32 32 13.37 73.03
ZEROQ MP 8 1.67 68.83
ZErOQ MP 8 1.67 69.44
Integer-Only [18] X X 6 6 2.50 70.90
ZEROQ MP 6 2.50 72.85
RVQuant [33] X X 8 8 334 70.29
DFQ [32] 8 8 334 71.20
ZEROQ 8 8 334 7291
(c) ShuffleNet
Method No D No FT W-bit A-bit Size (MB) Top-1
Baseline - - 32 32 594 65.07
ZEROQ MP 0.74 58.96
ZEROQ MP 6 1.11 62.90
ZEROQ 8 149 64.94
IV. RESULTS

In this section, we extensively test ZEROQ on a wide
range of models and datasets. We first start by discussing
the zero-shot quantization of ResNet18/50, MobileNet-V2, and
ShuffleNet on ImageNet in Section IV-A. Additional results
for quantizing ResNet152, InceptionV3, and SqueezeNext on
ImageNet, as well as ResNet20 on Cifarl0 are provided in
Appendix C. We also present results for object detection using

RetinaNet tested on Microsoft COCO dataset in Section [V-B.
We emphasize that all of the results achieved by ZEROQ are
100% zero-shot without any need for fine-tuning.

We also emphasize that we used exactly the same hyper-
parameters (e.g., the number of iterations to generate Distilled
Data) for all experiments, including the results on Microsoft
COCO dataset.

A. ImageNet

We start by discussing the results on the ImageNet dataset.
For each model, after generating Distilled Data based on Eq. 3,
we compute the sensitivity of each layer using Eq. 2 for
different bit precision. Next, we use Eq. 4 and the Pareto
frontier introduced in Section III-B to get the best bit-precision
configuration based on the overall sensitivity for a given model
size constraint. We denote the quantized results as WwAh
where w and h denote the bit precision used for weights and
activations of the NN model.

We present zero-shot quantization results for ResNet50
in Table Ia. As one can see, for W8AS8 (i.e., 8-bit quan-
tization for both weights and activations), ZEROQ results
in only 0.05% accuracy degradation. Further quantizing the
model to W6A6, ZEROQ achieves 77.43% accuracy, which
is 2.63% higher than OCS [44], even though our model
is slightly smaller (18.27MB as compared to 18.46MB for
0OCS).?> We show that we can further quantize ResNet50 down
to just 12.17MB with mixed precision quantization, and we
obtain 75.80% accuracy. Note that this is 0.82% higher than
OMSE [19] with access to training data and 5.74% higher
than zero-shot version of OMSE. Importantly, note that OMSE
keeps activation bits at 32-bits, while for this comparison our
results use 8-bits for the activation (i.e., 4x smaller activation
memory footprint than OMSE). For comparison, we include
results for PACT [5], a standard quantization method that
requires access to training data and also requires fine-tuning.

An important feature of the ZEROQ framework is that it can
perform the quantization with very low computational over-
head. For example, the end-to-end quantization of ResNet50
takes less than 30 seconds on an 8 Tesla V100 GPUs (one
epoch training time on this system takes 100 minutes). In terms
of timing breakdown, it takes 3s to generate the Distilled Data,
12s to compute the sensitivity for all layers of ResNet50, and
14s to perform Pareto Frontier optimization.

We also show ZEROQ results on MobileNetV2 and compare
it with both DFQ [32] and fine-tuning based methods [18, 33],
as shown in Table Ib. For W8AS8, ZEROQ has less than 0.12%
accuracy drop as compared to baseline, and it achieves 1.71%
higher accuracy as compared to DFQ method.

Further compressing the model to W6A6 with mixed-
precision quantization for weights, ZEROQ can still out-
perform Integer-Only [18] by 1.95% accuracy, even though
ZEROQ does not use any data or fine-tuning. ZEROQ can
achieve 68.83% accuracy even when the weight compression is

3Importantly note that OCS requires access to the training data, while
ZEROQ does not use any training/validation data.

8%, which corresponds to using 4-bit quantization for weights
on average.

We also experimented with percentile based clipping to
determine the quantization range [25] (please see Section D for
details). The results corresponding to percentile based clipping
are denoted as ZeroQ' and reported in Table I. We found that
using percentile based clipping is helpful for low precision
quantization. Other choices for clipping methods have been
proposed in the literature. Here we note that our approach is
orthogonal to these improvements and that ZEROQ could be
combined with these methods.

We also apply ZEROQ to quantize efficient and highly
compact models such as ShuffleNet, whose model size is only
5.94MB. To the best of our knowledge, there exists no prior
zero-shot quantization results for this model. ZEROQ achieves
a small accuracy drop of 0.13% for W8AS. We can further
quantize the model down to an average of 4-bits for weights,
which achieves a model size of only 0.73MB, with an accuracy
of 58.96%.

TABLE II: Object detection on Microsoft COCO using Reti-
naNet. By keeping activations to be 8-bit, our 4-bit weight
result is comparable with recently proposed method FQN [25],
which relies on fine-tuning. (Note that FQN uses 4-bit activa-
tions and the baseline used in [25] is 35.6 mAP).

Method No D No FT W-bit A-bit Size (MB) mAP
Baseline 32 32 145.10 36.4
FQN [25] X X 4 4 18.13 325
ZEROQ MP 8 18.13 33.7
ZEROQ MP 6 24.17 359
ZEROQ 8 8 36.25 364

We also compare with the recent Data-Free Compression
(DFC) [12] method. There are two main differences between
ZEROQ and DFC. First, DFC proposes a fine-tuning method
to recover accuracy for ultra-low precision cases. This can
be time-consuming and as we show it is not necessary. In
particular, we show that with mixed-precision quantization one
can actually achieve higher accuracy without any need for fine-
tuning. This is shown in Table III for ResNetl18 quantization
on ImageNet. In particular, note the results for W4A4, where
the DFC method without fine-tuning results in more than 15%
accuracy drop with a final accuracy of 55.49%. For this reason,
the authors propose a method with post quantization training,
which can boost the accuracy to 68.05% using W4A4 for
intermediate layers, and 8-bits for the first and last layers.
In contrast, ZEROQ achieves a higher accuracy of 69.05%
without any need for fine-tuning. Furthermore, the end-to-end
zero-shot quantization of ResNetl8 takes only 12s on an 8-
V100 system (equivalent to 0.4% of the 45 minutes time for
one epoch training of ResNet18 on ImageNet). Secondly, DFC
method uses Inceptionism [31] to facilitate the generation of
data with random labels, but it is hard to extend this for object
detection and image segmentation tasks.

TABLE III: Uniform post-quantization on ImageNet with
ResNetl8. We use percentile clipping for W4A4 and W4A8
settings. ZEROQ' means using percentile for quantization.

Method No D No FT W-bit A-bit Size (MB) Top-1
Baseline - - 32 32 44.59 71.47
PACT [5] X X 4 4 5.57 69.20
DFC [12] 4 4 5.58 5549
DFC [12] X 4 4 5.58 68.06
ZEROQ MP 4 5.57 -

ZEROQ' MP 4 557 69.05
Integer-Only[18] X X 6 6 836 67.30
DFQ [32] 6 6 836 66.30
ZEROQ MP 6 835 71.30
RVQuant [33] X X 8 8 11.15 70.01
DFQ [32] 8 8 11.15 69.70
DFC [12] X 8 8 11.15 69.57
ZEROQ 8 8 11.15 71.43

We include additional results of quantized ResNetl52,
InceptionV3, and SqueezeNext on ImageNet, as well as
ResNet20 on Cifar10, in Appendix C.

B. Microsoft COCO

Object detection is often much more complicated than
ImageNet classification. To demonstrate the flexibility of our
approach we also test ZEROQ on an object detection task on
Microsoft COCO dataset. RetinaNet [27] is a state-of-the-art
single-stage detector, and we use the pretrained model with
ResNet50 as the backbone, which can achieve 36.4 mAP.*

One of the main difference of RetinaNet with previous NNs
we tested on ImageNet is that some convolutional layers in
RetinaNet are not followed by BN layers. This is because of
the presence of a feature pyramid network (FPN) [26], and it
means that the number of BN layers is slightly smaller than
that of convolutional layers. However, this is not a limitation
and the ZEROQ framework still works well. Specifically, we
extract the backbone of RetinaNet and create Distilled Data.
Afterwards, we feed the Distilled Data into RetinaNet to
measure the sensitivity as well as to determine the activation
range for the entire NN. This is followed by optimizing for
the Pareto Frontier, discussed earlier.

The results are presented in Table II. We can see that for
W8AS8 ZEROQ has no performance degradation. For W6A6,
ZEROQ achieves 35.9 mAP. Further quantizing the model
to an average of 4-bits for the weights, ZEROQ achieves
33.7 mAP. Our results are comparable to the recent results
of FQN [25], even though it is not a zero-shot quantization
method (i.e., it uses the full training dataset and requires fine-
tuning). However, it should be mentioned that ZEROQ keeps
the activations to be 8-bits, while FQN uses 4-bit activations.

V. ABLATION STUDY

Here, we present an ablation study for the two components
of ZEROQ: (i) the Distilled Data generated by Eq. 3 to help

4Here we use the standard mAP 0.5:0.05:0.95 metric on COCO dataset.

sensitivity analysis and determine activation clipping range;
and (ii) the Pareto frontier method for automatic bit-precision
assignment. Below we discuss the ablation study for each part
separately.

A. Distilled Data

In this work, all the sensitivity analysis and the activation
range are computed on the Distilled Data. Here, we perform
an ablation study on the effectiveness of Distilled Data as
compared to using just Gaussian data. We use three different
types of data sources, (i) Gaussian data with mean “0” and
variance “1”, (ii) data from training dataset, (iii) our Distilled
Data, as the input data to measure the sensitivity and to
determine the activation range. We quantize ResNet50 and
MobileNetV2 to an average of 4-bit for weights and 8-bit for
activations, and we report results in Table IV.

For ResNet50, using training data results in 75.95% testing
accuracy. With Gaussian data, the performance degrades to
75.44%. ZEROQ can alleviate the gap between Gaussian
data and training data and achieves 75.80%. For more com-
pact/efficient models such as MobileNetV2, the gap between
using Gaussian data and using training data increases to
2.33%. ZEROQ can still achieve 68.83%, which is only
0.23% lower than using training data. Additional results for
ResNet18, ShuffleNet and SqueezeNext are shown in Ta-
ble VIIIL

TABLE IV: Ablation study for Distilled Data on ResNet50
and MobileNetv2. We show the performance of ZEROQ with
different data to compute the sensitivity and to determine the
activation range. All quantized models have the same size as
models with 4-bit weights and 8-bit activations.

Method W-bit A-bit ResNet50 MobileNetV2
Baseline 32 32 77.72 73.03
Gaussian MP 8 75.44 66.73
Training Data MP 8 75.95 69.06
Distilled Data MP 8 75.80 68.83

B. Sensitivity Analysis

Here, we perform an ablation study to show that the bit
precision of the Pareto frontier method works well. To test this,
we compare ZEROQ with two cases, one where we choose a
bit-configuration that corresponds to maximizing), (Which
is opposite to the minimization that we do in ZEROQ), and
one case where we use random bit precision for different
layers. We denote these two methods as Inverse and Random.
The results for quantizing weights to an average of 4-bit and
activations to 8-bit are shown in Table V. We report the best
and worst testing accuracy as well as the mean and variance in
the results out of 20 tests. It can be seen that ZEROQ results
in significantly better testing performance as compared to
Inverse and Random. Another noticeable point is that the best
configuration (i.e., minimum £),,,) can outperform 0.18%
than the worst case among the top-20 configurations from

ZEROQ, which reflects the advantage of the Pareto frontier
method. Also, notice the small variance of all configurations
generated by ZEROQ.

TABLE V: Ablation study for sensitivity analysis on ImageNet
(W4A8) with ResNet50. Top-20 configurations are selected
based on different sensitivity metric types. We report the
best, mean, and worst accuracy among 20 configurations.
“ZEROQ” and “Inverse” mean selecting the bit configurations
to minimize and maximize the overall sensitivity, respectively,
under the average 4-bit weight constraint. “Random” means
randomly selecting the bit for each layer and making the total
size equivalent to 4-bit weight quantization.

| Top-1 Accuracy

Baseline 77.72
Uniform 66.59

| Best Worst Mean Var
Random | 3898 0.10 6.86 105.8
Inverse | 0.11 0.06 0.07 3.0x107*
ZEROQ | 75.80 75.62 75.73 2.4x10°3

VI. CONCLUSIONS

We have introduced ZEROQ, a novel post-training quan-
tization method that does not require any access to the
training/validation data. Our approach uses a novel method
to distill an input data distribution to match the statistics
in the batch normalization layers of the model. We show
that this Distilled Data is very effective in capturing the
sensitivity of different layers of the network. Furthermore,
we present a Pareto frontier method to select automatically
the bit-precision configuration for mixed-precision settings. An
important aspect of ZEROQ is its low computational overhead.
For example, the end-to-end zero-shot quantization time of
ResNet50 is less than 30 seconds on an 8-V100 GPU system.
We extensively test ZEROQ on various datasets and models.
This includes various ResNets, InceptionV3, MobileNetV2,
ShuffleNet, and SqueezeNext on ImageNet, ResNet20 on
Cifarl0, and even RetinaNet for object detection on Microsoft
COCO dataset. We consistently achieve higher accuracy with
the same or smaller model size compared to previous post-
training quantization methods. All results show that ZEROQ
could exceed previous zero-shot quantization methods. We
have open sourced ZEROQ framework [1].

REFERENCES

[1] https://github.com/amirgholami/zeroq.git, Dec. 2019.

[2] Krste Asanovic and Nelson Morgan. Experimental determi-
nation of precision requirements for back-propagation training
of artificial neural networks. International Computer Science
Institute, 1991.

[3] Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry.
Post training 4-bit quantization of convolution networks for
rapid-deployment. CoRR, abs/1810.05723, 1(2), 2018.

[4] Chaim Baskin, Brian Chmiel, Evgenii Zheltonozhskii, Ron Ban-
ner, Alex M Bronstein, and Avi Mendelson. Cat: Compression-
aware training for bandwidth reduction. arXiv preprint
arXiv:1909.11481, 2019.

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]
[15]

(16]

(171

(18]

(19]

(20]

[21]

(22]

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-
Jen Chuang, Vijayalakshmi Srinivasan, and Kailash Gopalakr-
ishnan. Pact: Parameterized clipping activation for quantized
neural networks. arXiv preprint arXiv:1805.06085, 2018.
Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David.
Binaryconnect: Training deep neural networks with binary
weights during propagations. In Advances in neural information
processing systems, pages 3123-3131, 2015.

Zhen Dong, Zhewei Yao, Yaohui Cai, Daiyaan Arfeen, Amir
Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq-v2:
Hessian aware trace-weighted quantization of neural networks.
arXiv preprint arXiv:1911.03852, 2019.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael Mahoney,
and Kurt Keutzer. Hawq: Hessian aware quantization of neural
networks with mixed-precision. ICCV, 2019.

Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,
Xiangyu Yue, Peter Jin, Sicheng Zhao, and Kurt Keutzer.
Squeezenext: Hardware-aware neural network design. Workshop
paper in CVPR, 2018.

Song Han, Huizi Mao, and William J Dally. Deep compres-
sion: Compressing deep neural networks with pruning, trained
quantization and huffman coding. International Conference on
Learning Representations, 2016.

Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network.
In Advances in neural information processing systems, pages
1135-1143, 2015.

Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel Soudry.
The knowledge within: Methods for data-free model compres-
sion. arXiv preprint arXiv: 1912.01274, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770-778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. Workshop paper in NIPS, 2014.
Mark Horowitz. Computing’s energy problem (and what we can
do about it). In 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), pages 10-14.
IEEE, 2014.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto,
and Hartwig Adam. Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid
Ashraf, William J Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and <0.5
MB model size. arXiv preprint arXiv:1602.07360, 2016.
Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pages 2704-2713, 2018.

Eli Kravchik, Fan Yang, Pavel Kisilev, and Yoni Choukroun.
Low-bit quantization of neural networks for efficient inference.
In The IEEE International Conference on Computer Vision
(ICCV) Workshops, Oct 2019.

Raghuraman Krishnamoorthi. Quantizing deep convolutional
networks for efficient inference: A whitepaper. arXiv preprint
arXiv:1806.08342, 2018.

Kiseok Kwon, Alon Amid, Amir Gholami, Bichen Wu, Krste
Asanovic, and Kurt Keutzer. Co-design of deep neural nets
and neural net accelerators for embedded vision applications.
In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pages 1-6. IEEE, 2018.

Jun Haeng Lee, Sangwon Ha, Saerom Choi, Won-Jo Lee, and

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

Seungwon Lee. Quantization for rapid deployment of deep
neural networks. arXiv preprint arXiv:1810.05488, 2018.
Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks.
arXiv preprint arXiv:1605.04711, 2016.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016.

Rundong Li, Yan Wang, Feng Liang, Hongwei Qin, Junjie Yan,
and Rui Fan. Fully quantized network for object detection. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2810-2819, 2019.

Tsung-Yi Lin, Piotr Dolldr, Ross B. Girshick, Kaiming He,
Bharath Hariharan, and Serge J. Belongie. Feature pyramid
networks for object detection. CoRR, abs/1612.03144, 2016.
Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dolldr. Focal loss for dense object detection. In Proceed-
ings of the IEEE international conference on computer vision,
pages 2980-2988, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dolldr, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740-755. Springer,
2014.

Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu
Wang, and William J Dally. Exploring the regularity of sparse
structure in convolutional neural networks. Workshop paper in
CVPR, 2017.

Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark
Grobman. Same, same but different-recovering neural network
quantization error through weight factorization. arXiv preprint
arXiv:1902.01917, 2019.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka.
Inceptionism: Going deeper into neural networks. 2015.
Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max
Welling. Data-free quantization through weight equalization and
bias correction. ICCV, 2019.

Eunhyeok Park, Sungjoo Yoo, and Peter Vajda. Value-aware
quantization for training and inference of neural networks. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 580-595, 2018.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and
Ali Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In European Conference on
Computer Vision, pages 525-542. Springer, 2016.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.
Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted resid-
uals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages
4510-4520, 2018.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao,
Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Q-bert:
Hessian based ultra low precision quantization of bert. arXiv
preprint arXiv:1909.05840, 2019.

Christian Szegedy, Vincent Vanhoucke, Sergey Iloffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception architec-
ture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818-2826,
2016.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.
HAQ: Hardware-aware automated quantization. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, 2019.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian,
Peter Vajda, and Kurt Keutzer. Mixed precision quantization
of convnets via differentiable neural architecture search. arXiv

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

preprint arXiv:1812.00090, 2018.

Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian
Cheng. Quantized convolutional neural networks for mobile
devices. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4820-4828, 2016.
Dongqing Zhang, Jiaolong Yang, Donggiangzi Ye, and Gang
Hua. LQ-Nets: Learned quantization for highly accurate and
compact deep neural networks. In The European Conference
on Computer Vision (ECCV), September 2018.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural network
for mobile devices. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 6848—6856,
2018.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and
Zhiru Zhang. Improving neural network quantization without
retraining using outlier channel splitting. In Proceedings of
the 36th International Conference on Machine Learning, pages
7543-7552, 2019.

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong
Chen. Incremental network quantization: Towards lossless
cnns with low-precision weights. International Conference on
Learning Representations, 2017.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convo-
lutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016.

Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Che-
ung, and Pascal Frossard. Adaptive quantization for deep
neural network. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally.
Trained ternary quantization. International Conference on
Learning Representations (ICLR), 2017.

APPENDIX

512

SN conv16/17
128 128 128 128
conv6/7 conv8/9
6464
conv4/5 FC&softmax
Downsample
2-bif (@A)
4-bit
8 bit 8-bit 8-bit

Fig. 5: Mixed precision illustration of ResNetl18 on ImageNet.

A. Pareto Frontier

In Section III-B, we presented how we compute the overall sensitivity incurred by performing mixed-precision quantization.
In particular, in Eq. 4 we made the simplifying assumption that the sensitivity of each layer to quantization is independent
to sensitivity of other layers (we refer to this as independence assumption). This is clearly not the case in practice. One can
instead directly compute the sensitivity for each possible bit-precision computation without any approximation but this is not
possible as there are m’ possible bit-precision configurations. Here we discuss our approach which falls in between these two
extremes. Instead of computing the sensitivity of the entire network at once, we break the network into L/a groups, with each
group containing a layers. Furthermore, we break the x-axis (model size) of the Pareto frontier plot into b intervals in every
steps mentioned below.

We start with the first a layers of the network. We compute the sensitivity of these layers with the independence assumption.
This means we only have to compute m X a sensitivities. Afterwards, for each interval on the x-axis, we choose top
configurations that have the lowest overall sensitivity when the first a layers are quantized. We then relax the independence
assumption for these ¢ configurations and recompute the overall sensitivity, ., without any approximation. This leads to
a cost of ¢ of computing Eq. 4. We then select the top ¢ configurations out of these. We conduct this process for all the b
intervals for the model size. Therefore, the total cost will be ¢ X b.

The next step is to consider the next set of a layers. This is similar to the algorithm for the first step, except that now we
need to consider the top ¢ x b configurations selected for the first a layers. We first make the independence assumption for
the second a layers. Then we choose top x b configurations out of all ¢ x b x m® possible bit configurations for the first 2a
layers (this number is obtained by combining the top ¢ x b configurations of the first a layers and m® possible configurations
in the second a layers). Similar to before, we then relax the independence assumption and compute the correct sensitivity,
Qsum, Without any approximation. We then select the final top ¢ x b configurations for the first 2a layers based on this.

This process needs to be performed for all the L/a groups. As a result, the total computational cost becomes (L/a) x £ x b+
m x L. We find that this approach gives a good trade-off between the two extremes. Our experiments show that the accuracy is
not sensitive to the hyperparameters, and we typically set £, ¢, b, a to be 10, 5, 200, 5, respectively. It should be noted that this
approach has a small computational overhead but can automatically lead to bit precision settings with good empirical results.

B. Results on CIFAR-10

In this section, we show the results of our ZEROQ on CIFAR-10 dataset with ResNet20. See Table VI.

C. Extra Results on ImageNet

In this section, we show extra results for our ZEROQ on ImageNet with ResNet152, InceptionV3, and SqueezeNext
in Table VII. We also show more results to illustrate the effect of Distilled Data compared with Gaussian noise in Table VIIIL.

TABLE VI: ResNet20 on CIFAR-10

Method No Data No FT W-bit A-bit Size (MB) Top-1

Baseline - - 32 32 1.04 94.03
ZEROQ MP 8 0.13 93.16
ZEROQ MP 6 0.20 93.87
ZEROQ 8 8 0.26 93.94

TABLE VII: Additional results on ImageNet

(a) ResNet152 (b) InceptionV3

Method No D No FT w-bit a-bit Size (MB) Top-1 = Method No D No FT W-bit A-bit Size (MB) Top-1
Baseline - - 32 32 229.62 80.08 Baseline - - 32 32 90.92 78.88
ZEROQ MP 8 28.70 78.00 ZEROQ MP 8 11.35 77.57
ZEROQ MP 6 43.05 77.88 OCS[44] X 6 6 1722 71.30
RVQuant [33] X X 8 8 5741 7835 ZEROQ MP 6 17.02 7876
ZEROQ 8 8 57.41 7894 RVQuant [33] X X 8 8 2247 74.22

ZEROQ 8 8 2247 78.81

(c) SqueezeNext

Method No D No FT W-bit A-bit Size (MB) Top-1
Baseline - - 32 32 9.86 69.38
ZEROQ MP 8 1.23 59.23
ZEROQ MP 6 1.85 68.17
ZEROQ 8 8 247 69.17

TABLE VIII: Ablation study for Distilled Data on ResNetl8, ShuffleNet and SqueezeNext. We show the performance of
ZEROQ with different sources of data to compute the sensitivity and determine the activation range. All quantized models have
the same size as quantized models with 4-bit weights.

Method W-bit A-bit ResNetl8 ShuffleNet SqueezeNext
Baseline 32 32 71.47 65.07 69.38
Gaussian MP 8 67.87 56.23 48.41
Training Data ~ MP 8 68.61 58.90 62.55
Distilled Data MP 8 68.45 57.50 59.23

D. Clipping

Quantization maps a single-precision tensor z to a low-precision tensor (Q(z). This includes two steps: 1) clipping the
original tensor to range [a, b], and then 2) mapping this range to integer range [0, 2¥ — 1]. A simple way is to set [a, b] =
[min(z), max(z)] for conventional quantization methods. Recently, more effort has been spent on choosing the “optimal”
range of [a, b] [3, 5, 19, 25], which are the so-called clipping methods.

In all of our experiments above, we use the simplest way, i.e., [a, b] = [min(z), max(z)], to conduct the quantization.
The main reason behind this is two-fold: (i) we want to show the efficacy of ZEROQ without the assistance of any other
technique; (ii) some of proposed methods [3, 5] need hyper-parameter tuning to get the optimal a and b which can be costly.
However, we show that performance of ZEROQ can be further boosted by the weight clipping method, if the slightly higher
computational overhead could be afforded. In particular, we use the “percentile” method proposed in [25]. This method directly
clips a single-precision weight tensor to ~y-th and (1 —~y)-th percentiles (we refer the reader to [25] for more details). As shown
in Table I and Table III, ZEROQ can be further improved by weight clipping.

	I Introduction
	II Related work
	III Methodology
	III-A Distilled Data
	III-B Pareto Frontier

	IV Results
	IV-A ImageNet
	IV-B Microsoft COCO

	V Ablation Study
	V-A Distilled Data
	V-B Sensitivity Analysis

	VI Conclusions
	Appendix
	A Pareto Frontier
	B Results on CIFAR-10
	C Extra Results on ImageNet
	D Clipping

