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Abstract

Transformer based architectures have become de-facto mod-
els used for a range of Natural Language Processing tasks.
In particular, the BERT based models achieved significant
accuracy gain for GLUE tasks, CoNLL-03 and SQuAD. How-
ever, BERT based models have a prohibitive memory footprint
and latency. As a result, deploying BERT based models in
resource constrained environments has become a challeng-
ing task. In this work, we perform an extensive analysis of
fine-tuned BERT models using second order Hessian infor-
mation, and we use our results to propose a novel method for
quantizing BERT models to ultra low precision. In particu-
lar, we propose a new group-wise quantization scheme, and
we use Hessian-based mix-precision method to compress the
model further. We extensively test our proposed method on
BERT downstream tasks of SST-2, MNLI, CoNLL-03, and
SQuAD. We can achieve comparable performance to base-
line with at most 2.3% performance degradation, even with
ultra-low precision quantization down to 2 bits, corresponding
up to 13× compression of the model parameters, and up to
4× compression of the embedding table as well as activations.
Among all tasks, we observed the highest performance loss
for BERT fine-tuned on SQuAD. By probing into the Hessian
based analysis as well as visualization, we show that this is
related to the fact that current training/fine-tuning strategy of
BERT does not converge for SQuAD.

1 Related Work
Model compression Model compression is a very active area
of research. Efforts in this area could be broadly categorized
as follows: (i) new architectures that are compact by design
(Iandola et al. 2016; Howard et al. 2017); (ii) automated
neural architecture search (NAS) with reward function set
as latency or model size (Wang et al. 2019); (iii) pruning
based methods to reduce model size of existing architectures
(LeCun, Denker, and Solla 1990; Hassibi, Stork, and Wolff
1994); (iv) knowledge distillation from a large model to help
train a more compact model (Ba and Caruana 2014; Hinton,
Vinyals, and Dean 2015); (v) hardware and architecture co-
design (Gholami et al. 2018); and (vi) inference quantization
(Zhang, Choromanska, and LeCun 2015; Dong et al. 2019).
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Here we solely focus on quantization (Courbariaux, Ben-
gio, and David 2015; Rastegari et al. 2016; Li, Zhang, and Liu
2016; Zhou et al. 2016; Choi et al. 2018; Dong et al. 2019;
Zhang et al. 2018). One of the challenges here is that ultra
low precision quantization can lead to significant accuracy
degradation. Mixed precision quantization (Wu et al. 2018;
Zhou et al. 2018; Wang et al. 2019) and multi-stage quantiza-
tion (Zhou et al. 2017) have been proposed to solve/alleviate
this problem. However, the challenge with mixed-precision
quantization is that the search space is exponentially large.
For instance, if we have three precision options for a specific
layer (2, 4 or 8-bits), then the total search space of each fine-
tuned BERT model (Devlin et al. 2019) becomes 312 ≈ 5.3×
105 different precision settings. Recently, (Dong et al. 2019)
proposed a second-order sensitivity based method to address
this issue and achieved state-of-the-art results on computer
vision tasks. Part of our paper builds upon this prior work and
extends the results to include other variations of second order
information instead of just the mean value of the Hessian
spectrum.

Compressed NLP model Notable examples for NLP com-
pression work are LSTM and GRU-based models for machine
translation and language model (Xu et al. 2018; Wang et al.
2018). From the recent introduction of Tranformer models,
we have observed a significant increase in NLP model size.
This is due to the incorporation of very large fully connected
layers and attention matrices in Transformers (Vaswani et al.
2017; Devlin et al. 2019; Yang et al. 2019; Liu et al. 2019;
Radford et al. 2019). Model compression is crucial for deploy-
ing these models in resource constrained environments. Pilot
work addressing this are (Michel, Levy, and Neubig 2019;
Bhandare et al. 2019). From a different angle, (Tay et al. 2019;
Ma et al. 2019) have probed the architectural change of self-
attention layer to make the Transformer lightweight. There
have also been attempts to use distillation to reduce large
pre-trained Transformer models such as BERT (Devlin et
al. 2019) in (Tang et al. 2019; Sun et al. 2019). However,
significant accuracy loss is observed even for relatively small
compression ratio of 4×. Here we show that this compression
ratio could be increased up to 13×, including 4× reduction
of embedding layer, with much smaller performance degra-
dation.
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(a) SST-2 (b) MNLI (c) CoNLL-03 (d) SQuAD

Figure 1: From (a) to (d): Top eigenvalue distributions for different encoder layers for SST-2, MNLI, CoNNL-03, SQuAD,
respectively. Layers in the middle have higher mean values and larger variance than the others. The last three layers have the
smallest variance and mean values among all layers.

2 Methodology

In this section, we introduce our proposed BERT quantization
methods, including the mixed precision quantization based
on Hessian information, as well as techniques used for the
group-wise quantizing scheme.

As in (Devlin et al. 2019), a fine-tuned BERTBASE model
consists of three parts: embedding; Transformer based en-
coder layers; and output layer. Specifically, assuming x ∈ X
is the input word (sentence) and y ∈ Y is the corresponding
label, we have the loss function L defined as:

L(θ) =
∑

(xi,yi)

CE(softmax(Wc(Wn(...W1(We(xi))))), yi),

where CE is the cross entropy function (or other appropriate
loss functions), θ is a combination of We, W1, W2, ...,Wn

and Wc. Here, We is the embedding table, W1, W2, ..., Wn

are the encoder layers, and Wc is the output/classifier layer1.
The size of parameters in BERTBASE model is 91MB for

embedding, 325MB for encoder and 0.01MB for output. We
do not quantize the output layer due to its negligible size, and
focus on quantizing both the embedding and encoder layers.
As will be discussed in Sec. 4.1, we find that the embedding
layer is much more sensitive to quantization than the encoder
layers. As a result, we quantize embedding and encoder pa-
rameters in different ways. The quantization schemes we
used are explained in detail in the following sections.

2.1 Quantization process

General NN inference is performed in floating point preci-
sion for both weights and activations. Quantization restricts
the network weights to a finite set of values as Q(z) =
qj , for tj ≤ z ≤ tj+1. Here Q is quantization operator,
z is a real valued input tensor (activation or a weight). Here
k is the quantization precision for a specific layer.

There are multiple choices for quantization function Q.
Here we use uniform quantization function, where the range
of floating point values in a tensor is equally split (Zhou et
al. 2016; Hubara et al. 2017) and then represented by un-
signed integers in

{
0, . . . , 2k − 1

}
. It should be noted that

1Here, we use W∗ for both function and its corresponding pa-
rameters without confusion.

a non-uniform quantizer can potentially further increase the
accuracy. However, we solely focus on uniform quantization
since it allows more efficient and easier hardware imple-
mentation. To backpropogate gradients through Q, which
is non-differentiable, we use the Straight-through Estimator
(STE) (Bengio, Léonard, and Courville 2013). See Appendix
for more details about the forward and backward propagation
during the entire quantization process.

2.2 Mixed precision quantization

Different encoder layers are attending to different struc-
tures (Clark et al. 2019), and it is expected that they exhibit
different sensitivity. Thus, assigning the same number of bits
to all the layers is sub-optimal. This scenario is more critical
if the targeted model size is very small, which requires ultra
low precision such as 4-bits or 2-bits. As a result we explore
mixed-precision quantization, where we assign more bits to
more sensitive layers in order to retain performance.

In (Dong et al. 2019), a Hessian AWare Quantization
(HAWQ) is developed for mixed-bits assignments. The main
idea is that the parameters in NN layers with higher Hessian
spectrum (i.e., larger top eigenvalues) are more sensitive to
quantization and require higher precision as compared to
layers with small Hessian spectrum. However, there exist 7M
parameters for each encoder layer in BERTBASE. Given that
the Hessian of each layer is a matrix of size 7M × 7M , there
is a common misconception that computing second order
statistics is infeasible. However, the Hessian spectrum can
be computed by a matrix-free power iteration method (Yao
et al. 2018), which does not require explicit formation of the
operator. To illustrate this, we take the first encoder layer as
an example. Denoting the gradient of the first encoder layer
as g1, for a random vector v independent with g1, we have

∂gT1 v

∂W1
=

∂gT1
∂W1

v + gT1
∂v

∂W1
=

∂gT1
∂W1

v = H1v, (1)

where H1 is Hessian matrix of the first encoder. The top eigen-
value then can be computed by power iteration, as shown in
Appendix. We denote λi as the top eigenvalue of i-th encoder
layer. Using this approach, we show the distribution of top
Hessian eigenvalue for different layers of BERTBASE are
shown in Fig. 1. Different layers exhibit different magni-

8816



(a) SQuAD 7th layer (b) SQuAD 11th layer

Figure 2: The loss landscape for different layers in SQuAD
is illustrated by perturbing the parameters along the first
two dominant eigenvectors of the Hessian. The silver sphere
shows the point in the parameter space to which the BERT
model has converged.

tude of eigenvalues even though all layers have exactly same
structure and size.

The above Hessian based approach was used in (Dong et
al. 2019), where top eigenvalues are computed and averaged
for different training data. More aggressive quantization is
performed for layers that have smaller top eigenvalue, which
corresponds to flatter loss landscape as in Appendix. How-
ever, we find that assigning bits based only on the average
top eigenvalues is infeasible for many NLP tasks. As shown
in Fig. 1, top eigenvalues of Hessian for some layers exhibits
very high variance with respect to different portion of the
input dataset. As an example, the variance of the 7th layer for
SQuAD stays larger than 61.6 while the mean of that layer is
around 1.0, even though each data point corresponds to 10%
of the entire dataset (which is 9K samples). To address this,
we use the following metric instead of just using mean value,

Ωi � |mean(λi)|+ std(λi), (2)

where λi is the distribution of the top eigenvalues of Hi,
calculated with 10% of training dataset.2

After Ωi is computed, we sort them in descending order,
and we use it as a metric to relatively determine the quanti-
zation precision. We then perform quantization-aware fine-
tuning based on the selected precision setting.

An important technical point that we need to emphasize
is that our method expects that before performing quanti-
zation the trained model has converged to a local minima.
That is, the practitioners who trained BERT and performed
its fine-tuning for downstream tasks should have chosen the
hyper-parameters and number of iterations such that a local
minima has been reached. The necessary optimality condi-
tions are zero gradient, and positive curvature (i.e., positive
Hessian eigenvalue). In our analysis, we observed that for the
three tasks of MNLI, CoNLL-03, and SST-2 the top Hessian
eigenvalue is indeed positive for (see Appendix). However,

2Without confusion, we use λi for both single top eigenvalue
and its distribution with respect to 10% of the data.

(a) Layer-wise (b) Group-wise (Nh

group)
(c) Group-wise (2Nh

group)

Figure 3: The overview of Group-wise Quantization Method.
We illustrate this with value matrices of a multi-head self
attention layer. Here Nh(number of heads) value matrices Wv

are concatenated together, which results in a 3-d tensor. The
same color denotes the same group with a shared quantization
range.

we find that the BERT model fine-tuned for SQuAD has
actually not converged to a local minima, as evident in the
Hessian eigenvalues shown in Fig. 1(d), where we observe
very large negative eigenvalues. Directly visualizing the loss
landscape also shows this very clearly as in Fig. 2. Because
of this, our expectation is that performing quantization on
SQuAD would lead to higher performance degradation as
compared to other tasks, and this is indeed the case as will
be discussed next.

2.3 Group-wise Quantization

Assume that the input sequence has n words and each word
has a d-dim embedding vector (d = 768 for BERTBASE),
i.e., x = (x(1), . . . , x(n))T ∈ R

n×d. In Transformer en-
coder, each self-attention head has 4 dense matrix, i.e.,
Wk,Wq,Wv,Wo ∈ R

d
Nh

×d, where Nh is the number of
attention heads. Here Wk, Wq, Wv and Wo stand for key,
query, value and output weight matrix. Each self-attention
head computes the weighted sum as

Att(x, x(j)) = Wo

n∑
i=1

softmax

(
x(j)TWT

q Wkx(i)√
d

)
Wvx(i).

Through this reparametrization, the multi-head self-attention
(MHSA) will add these features into the final output, that is
we will have

∑Nh

i=1 Atti(x, x(j)). Directly quantizing each
4 matrices in MHSA as an entirety with the same quantiza-
tion range can significantly degrade the accuracy, since there
are more than 2M parameters in total, which corresponds
to 4 × 12 × 64 = 3072 neurons, and the weights corre-
sponding to each neuron may lie in different range of real
numbers. Channel-wise quantization can be used to alleviate
this problem in convolutional neural networks, where each
convolutional kernel can be treated as a single output channel
and have its own quantization range. However, this cannot be
directly applied for dense matrices, since each dense matrix
itself is a single kernel. Therefore, we propose group-wise
quantization for attention-based models. We treat the individ-
ual matrix W with respect to each head in one dense matrix
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of MHSA as a group so there will be 12 groups. Furthermore,
in each group, we bucket sequential output neurons together
as sub-groups, e.g., each 6 output neurons as one sub-group
so there are 12 × 64

6 = 128 sub-group in total (the hidden
dim in each head of BERTBASE is 768

12 = 64). Each sub-
group can have its own quantization range. An illustration
is shown in Fig. 3 for Wv, where we concatenate Nh value
matrix Wv to be a 3-d tensor. For layer-wise quantization,
the entire 3-d tensor will be quantized into the same range
of discrete numbers, as shown in Fig. 3a. A special case of
group-wise quantization is that we treat each dense matrix
as a group, and every matrix can have its own quantization
range as shown in Fig. 3b. A more general case in Fig. 3c
is that we partition each dense matrix with respect to output
neuron, and we bucket every continuous d

2Nh
output neurons

as a group. The effect of finer group-wise quantization is
further investigated in Sec. 3.2.

3 Experiment

In this section, we describe our experiments on evaluating
the proposed Q-BERT on four different NLP tasks. Details of
the datasets are shown in Appendix. To the best of our knowl-
edge, there is no published work done on BERT quantization
at this point, so we report Direct quantization (DirectQ), i.e.,
quantization without mixed-precision and group-wise quanti-
zation as a baseline.

3.1 Main Results

We present results of Q-BERT on the development set of the
four tasks of SST-2, MNLI, CoNLL-03, and SQuAD, as sum-
marized in Tab. 1 and 2. As one can see, Q-BERT performs
significantly better compared to the DirectQ method across
all the four tasks in each bit setting. The gap becomes more
obvious for ultra low bit setting. As an example, in 4-bits
setting, Direct quantization (DirectQ) of SQuAD results in
11.5% performance degradation as compared to BERTBASE.
However, for the same 4-bits setting, Q-BERT only exhibits
0.5% performance degradation. Moreover, under 3-bits set-
ting, the gap between Q-BERT and DirectQ increases even
further to 9.68-27.83% for various tasks.

In order to push further the precision setting to lower bits,
we investigate the mixed-precision Q-BERT (Q-BERTMP).
As can be seen, Q-BERT with uniform 2-bits setting has very
poor performance across all four tasks, though the memory
is reduced by 20% against 3-bits setting. The reason behind
this is the discrepancy that not all the layers have the same
sensitivity to quantization as evident from loss landscape
visualizations; see Appendix. Intuitively, for more sensitive
layers, higher bit precision needs to be set, while for layers
that are less sensitive, 2-bits setting is already sufficient. To
set mixed precision to each encoder layer of BERTBASE, we
measure the sensitivity based on Eq. 2, which captures both
mean and variance of the top eigenvalue of the Hessian shown
in Fig. 1. Note that all experiments in Fig. 1 are based on 10
runs and each run uses 10% of the entire training dataset. We
can obverse that for most of the lower encoder layers (layer
1-8), the variance is pretty large compared to the last three
layers. We generally observe that the middle part (layer 4-8)

Table 1: Quantization results for BERTBASE on Natural Lan-
guage Understanding tasks. Results are obtained with 128
groups in each layer. We abbreviate quantization bits used for
weights as “w-bits”, embedding as “e-bits”, model size in MB
as “Size”, and model size without embedding layer in MB
as “Size-w/o-e”. For simplicity and efficacy, all the models
except for Baseline are using 8-bits activation. Furthermore,
we compare Q-BERT with direct quantization method (“Di-
rectQ”) without using mixed precision or group-wise quanti-
zation. Here “MP” refers to mixed-precision quantization.

(a) SST-2

Method w-bits e-bits Acc Size Size-w/o-e

Baseline 32 32 93.00 415.4 324.5

Q-BERT 8 8 92.88 103.9 81.2

DirectQ 4 8 85.67 63.4 40.6
Q-BERT 4 8 92.66 63.4 40.6

DirectQ 3 8 82.86 53.2 30.5
Q-BERT 3 8 92.54 53.2 30.5
Q-BERTMP 2/4 MP 8 92.55 53.2 30.5

DirectQ 2 8 80.62 43.1 20.4
Q-BERT 2 8 84.63 43.1 20.4
Q-BERTMP 2/3 MP 8 92.08 48.1 25.4

(b) MNLI

Method w-bits e-bits Acc Acc Size Size
m mm w/o-e

Baseline 32 32 84.00 84.40 415.4 324.5

Q-BERT 8 8 83.91 83.83 103.9 81.2

DirectQ 4 8 76.69 77.00 63.4 40.6
Q-BERT 4 8 83.89 84.17 63.4 40.6

DirectQ 3 8 70.27 70.89 53.2 30.5
Q-BERT 3 8 83.41 83.83 53.2 30.5
Q-BERTMP 2/4 MP 8 83.51 83.55 53.2 30.5

DirectQ 2 8 53.29 53.32 43.1 20.4
Q-BERT 2 8 76.56 77.02 43.1 20.4
Q-BERTMP 2/3 MP 8 81.75 82.29 46.1 23.4

(c) CoNLL-03

Method w-bits e-bits F1 Size Size-w/o-e

Baseline 32 32 95.00 410.9 324.5

Q-BERT 8 8 94.79 102.8 81.2

DirectQ 4 8 89.86 62.2 40.6
Q-BERT 4 8 94.90 62.2 40.6

DirectQ 3 8 84.92 52.1 30.5
Q-BERT 3 8 94.78 52.1 30.5
Q-BERTMP 2/4 MP 8 94.55 52.1 30.5

DirectQ 2 8 54.50 42.0 20.4
Q-BERT 2 8 91.06 42.0 20.4
Q-BERTMP 2/3 MP 8 94.37 45.0 23.4
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Table 2: Quantization results for BERTBASE on SQuAD.

Method w-bits e-bits EM F1 Size Size-w/o-e

Baseline 32 32 81.54 88.69 415.4 324.5

Q-BERT 8 8 81.07 88.47 103.9 81.2

DirectQ 4 8 66.05 77.10 63.4 40.6
Q-BERT 4 8 80.95 88.36 63.4 40.6

DirectQ 3 8 46.77 59.83 53.2 30.5
Q-BERT 3 8 79.96 87.66 53.2 30.5
Q-BERTMP 2/4 MP 8 79.85 87.49 53.2 30.5

DirectQ 2 8 4.77 10.32 43.1 20.4
Q-BERT 2 8 69.68 79.60 43.1 20.4
Q-BERTMP 2/3 MP 8 79.25 86.95 48.1 25.4

has the largest mean(λi). Beyond the relatively smaller mean,
the last three layers also have much smaller variance, which
indicates the insensitivity of these layers. Therefore, higher
bits will only be assigned for middle layers according to Eq. 2
for Q-BERT 2/3 MP.3 In this way, with only additional 5MB
memory storage, 2/3-bits Q-BERTMP is able to retain the
performance drop within 2.3% for MNLI, SQuAD and 1.1%
for SST-2, CoNLL-03, with up to 13× compression ratio in
weights. Note that this is up to 6.8% better than Q-BERT with
uniform 2 bits.

One consideration for quantization is that 3-bit quantized
execution is typically not supported in hardware. It is how-
ever possible to load 3-bit quantized values and cast them to
higher bit precision such as 4 or 8 bits in the execution units.
This would still have the benefit of reduced memory volume
to/from DRAM. It is also possible to avoid using 3 bits and
instead use a mixture of 2 and 4 bits as shown in Tab. 1. For
example, SST-2 Q-BERTMP with mixed 2/4-bit precision
weights has the same model size as the 3 bit quantization in
53.2MB and achieves similar accuracy. We observe similar
trend for other tasks as well.

One important observation is that we found SQuAD to
be harder to quantize as compared to other tasks; see Tab. 2.
For example, 2-bits DirectQ results in more than 10% F1

score degradation. Even Q-BERT has larger performance
drop as compared to other tasks in Tab. 1. We studied this phe-
nomenon further through Hessian analysis. In Fig. 1, among
all the tasks, it can be clearly seen that SQuAD not only has
much larger eigenvalue variance, but it has very large nega-
tive eigenvalues. In fact this shows that the existing BERT
model for SQuAD has not reached a local minima. This is
further illustrated in the 3-d loss landscape of all four tasks in
Appendix. It can be clearly seen that for other three tasks, the
stopping point is at a quadratic bowl (at least in the first two
dominant eigenvalue directions of the Hessian). However,
compared to the others, SQuAD has a totally different struc-
ture to its loss landscape. As shown in Fig. 2, the stopping
points of different layers on SQuAD have negative curvature
directions, which means they have not converged to a local
minima yet. This could well explain why the quantization of
SQuAD results in more accuracy drop. Our initial attempts to

3Exact detailed bits setting is included in the Appendix

address this by changing training hyper-parameters were not
successful. We found that the BERT model quickly overfits
the training data. However, we emphasize that fixing BERT
model training itself is outside the scope of this paper and
not possible with academic computational resources.

3.2 Effects of group-wise quantization

We measure the performance gains with different group num-
bers in Tab. 3. We can observe from the table that performing
layer-wise quantization (shown in Fig. 3a) is sub-optimal
for all four tasks (the performance drop is around 7% to
11.5%). However, the performance significantly increases
as we increase the number of groups. For example, for 12
groups, the performance degradation is less than 2% for all
the tasks. Further increasing the group number from 12 to
128 increases the accuracy further by at least 0.3% accuracy.
However, increasing the group number further from 128 to
768 can only increase the performance within 0.1%. This
shows that the performance gain almost saturates around 128
groups. It is also preferable not to have very large value for
the number of group since it increases the number of Look-
up Tables (LUTs) necessary for each matrix multiplication
which can adversely affect hardware performance, and based
on our results there are diminishing returns in terms of ac-
curacy. In all our experiments, we used 128 groups for both
Q-BERT and Q-BERTMP in Sec. 3.1.

Table 3: Effects of group-wise quantization for Q-BERT on
three tasks. The quantization bits were set to be 4 for weights,
8 for embeddings and 8 for activations for all the tasks.

# Group SST-2 MNLI-m/mm CoNLL-03

Baseline 93.00 84.00/84.40 95.00

1 85.67 76.69/77.00 89.86
12 92.31 82.37/82.95 94.42
128 92.66 83.89/84.17 94.90
768 4 92.78 84.00/84.20 94.99

4 Discussion

In this Section, we further investigate the quantization effects
on different modules, e.g. different embedding layers (e.g.,
word and position embeddings), and we perform qualitative
analysis using attention distribution. This illustrates that Q-
BERT better captures the behaviour of the original model as
compared to DirectQ in all cases.

4.1 Quantization effects on different modules

Here we investigate the quantization effects with respect to
different modules of BERT model (multi-head self-attention
versus feed-forward network, and different embedding layers,
i.e., word embedding versus position embedding).

Generally speaking, we find that embedding layer is more
sensitive than weights for quantization. This is illustrated
in Tab. 4a, where we use 4-bits layerwise quantization for

4Here we treat each output neuron as a single group.
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embedding, which results in an unacceptable performance
drop up to 10% for SST-2, MNLI, CoNLL-03 and even more
than 20% for SQuAD. This is despite the fact that we used
8/8-bits for weights/activations. On the contrary, encoder
layers consume around 79% total parameters (4× embedding
parameter size), while quantizing them to 4-bits in Tab. 1
and 2 leads to less performance loss.

Furthermore, we find that position embedding is very sensi-
tive to quantization. For instance, quantizing position embed-
ding to 4 bits results in generally 2% additional performance
degradation than quantizing word embedding, even though
the position embedding only accounts for less than 5% of
the entire embedding. This indicates the importance of posi-
tional information in Natural Language Understanding tasks.
Given position embedding only accounts for a small portion
of model size, we can do mixed-precision quantization for
embedding to further push down the model size boundary
with a tolerable accuracy drop, as shown in Appendix.

Table 4: Quantization effect to different modules. We ab-
breviate the quantization bits used for word embedding as
“ew-bits”, position embedding as “ep-bits”, multi-head atten-
tion layer as “s-bits” and fully-connected layer as “f-bits”.
In (a), we set weight and activation bits as 8. In (b), we set
embedding and activation bits as 8.

(a) quantization effect on embedding

Method ew-bits ep-bits SST-2 MNLI-m CoNLL-03 SQuAD

Baseline 32 32 93.00 84.00 95.00 88.69

Q-BERT 8 8 92.88 83.83 94.79 88.47
Q-BERT 4 8 91.74 82.91 94.44 87.55
Q-BERT 8 4 89.11 82.84 93.86 72.38
Q-BERT 4 4 85.55 78.08 84.32 61.70

(b) quantization of multi-head attention versus fully-connected
layer

Method s-bits f-bits SST-2 MNLI-m CoNLL-03 SQuAD

Baseline 32 32 93.00 84.00 95.00 88.69

Q-BERTMP 1/2MP 2/3MP 89.56 73.66 91.74 75.81
Q-BERTMP 2/3MP 1/2MP 85.89 70.89 87.55 68.71
Q-BERTMP 2/3MP 2/3MP 92.08 81.75 93.91 86.95

To study the quantization effects on self-attention layers
and fully-connected networks, we conducted extensive ex-
periments under different bits settings for the encoder layers.
The results are shown in Tab. 4b. Specifically, we adopt the Q-
BERTMP setting in Tab. 1, with a mixture of 2 and 3 bits for
encoder weights. To test the robustness of the two modules
inside each encoder layer, we further reduce one more bit in
the corresponding modules and denote the resulting precision
setting 1/2MP. From Tab. 4b, we can conclude that generally
self-attention layer is more robust to quantization than the
fully-connected network, since 1/2MP self-attention results
in about 5% performance drop while 1/2MP fully-connected
will worsen this to 11%.

(a) SST-2 (b) MNLI

(c) CoNLL-03 (d) SQuAD

Figure 4: KL divergence over attention distribution between
Q-BERT/DirectQ and Baseline. The distance between Q-
BERT and Baseline is much smaller than that of DirectQ and
Baseline.

4.2 Qualitative Analysis

We use attention information to conduct qualitative analysis
to analyze the difference between Q-BERT and DirectQ.

To do so, we compute the Kullback–Leibler (KL) diver-
gence between the attention distribution for the same input
from the coordinated head of both quantized BERT and full-
precision BERT. It should be noted that we compute the
average distance out of 10% of the entire training dataset.
The smaller KL divergence here means that the output of
the multi-head attention of the two models is closer to each
other. We illustrate this distance score for each individual
head in Fig. 4 for SST-2, MNLI, CoNLL-03 and SQuAD. We
compared Q-BERT and DirectQ with 4-bits weights, 8-bits
embedding and 8-bits activation. Each scatter point in Fig. 4
denotes the distance w.r.t one head, and the line chart shows
the average results over the 12 heads in one layer. We can
clearly see that Q-BERT always incurs a smaller distance to
the original baseline model as compared to DirectQ model,
for all the different layers.

5 Conclusion

In this work, we perform an extensive analysis of fine-tuned
BERT and propose Q-BERT, an effective scheme for quantiz-
ing BERT. In order to aggressively reduce the model size by
mixed-precision quantization, we proposed a new layer-wise
Hessian based method which captures both the average and
the variance of the eigenvalues. Moreover, a new group-wise
quantization is proposed to perform fine-grained quantization
inside each encoder layer. In four downstream tasks, equipped
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with the aforementioned methods, Q-BERT achieves 13×
compression ratio in weights, 4× smaller activation size, and
4× smaller embedding size, with at most 2.3% accuracy loss.
To better understand how different factors will affect the
trade-off between performance and the model compression
ratio in Q-BERT, we conduct controlled experiments to in-
vestigate the effect of different quantization schemes and
quantizing different modules in BERT, respectively.
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