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Abstract. It has been observed that residual networks can be viewed as the explicit Euler discretization of an Ordinary
Differential Equation (ODE). This observation has motivated the so-called Neural ODE models, where it is possible to use higher
order discretization schemes with the possibility of adaptive time stepping. Here, we propose ANODEV2, which is an extension
of the approach that also allows evolution of the neural network parameters, in a coupled ODE-based formulation. The Neural
ODE method introduced earlier is in fact a special case of this new more general framework, which allows the evolution of the
neural network’s parameters in time, along with the activations.

We present the formulation of ANODEV2, derive the optimality conditions, and implement a coupled reaction-diffusion-
advection version of this framework in PyTorch. We present empirical results using several different configurations of ANODEV2,
testing them on multiple models on CIFAR-10. We report results showing that this coupled ODE-based framework is indeed
trainable, and that it achieves higher accuracy, as compared to the baseline models as well as the recently-proposed Neural
ODE approach.

1. Introduction. Residual networks [1, 2] have enabled training of very deep neural networks (DNNs).
Recent work has shown an interesting connection between residual blocks and Ordinary Differential Equations
(ODEs), showing that a residual network can be viewed as a discretization of a continuous ODE operator [3,
4, 5, 6, 7, 8]. These formulations are commonly called Neural ODEs, and here we follow the same convention.
Neural ODEs provide a general framework that connects discrete DNNs to continuous dynamical systems
theory, as well as discretization and optimal control of ODEs, all subjects with very rich theory.

A basic Neural ODE formulation and its connection to residual networks (for a single block in a network)
is the following:

z1 = z0 + f(z0, θ) ResNet,(1.1a)

z1 = z0 +

∫ 1

0

f(z(t), θ)dt ODE,(1.1b)

z1 = z0 + f(z0, θ) ODE forward Euler.(1.1c)

Here, z0 is the input to the network and z1 is the output activation; θ is the vector of network weights
(independent of time); and f(z, θ) is the nonlinear operator defined by this block. (Here, we have written
the ODE dz/dt = f(z, θ) in terms of its solution at t = 1.) We can see that a single-step of forward Euler
discretization of the ODE is identical to a traditional residual block. Alternatively, we could use a different
time-stepping scheme or, more interestingly, use more time steps. Once the connection to ODEs was identified,
several groups have incorporated the Neural ODE structure in neural networks and evaluated its performance
on several different learning tasks.

A major challenge with training Neural ODEs is that backpropogating through ODE layers requires
storage of all the intermediate activations (i.e. z) in time. In principle, the memory footprint of ODE layers
has a cost of O(Nt) (where Nt is the number of time steps to solve the ODE layer), which is prohibitive.
The recent work of [8] proposed an adjoint based method to address this, with a training strategy that
required only storage of the activation at the end of the ODE layer. All the intermediate activations were
then “re-computed” by solving the ODE layers backwards. However, it has been recently shown that such
an approach could lead to incorrect gradients, due both to numerical instability of backward ODE solve,
and also to inconsistencies that relate to optimizing infinite dimensional operators [9]. This is basically the
well-known Discretize-Then-Optimize (DTO) versus Optimize-Then-Discretize issue. The checkpointing-based
method ANODE [9] was proposed to solve the incorrect gradient problem of Neural ODE. More importantly,
it was observed that using other discretization schemes such as RK2 or RK4, or using more time steps, does
not affect the generalization performance of Neural ODEs as compared to baseline networks, despite the
common belief [9]. This is a very important challenge, as lack of any performance gain obviates the need for
using Neural ODEs. In this paper, building on the latter approach of [9], we propose ANODEV2, a more
general Neural ODE framework that addresses this problem. The key idea of ANODEV2 is that it allows
the evolution of both weights and activations with a coupled system of ODEs:
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(1.2)

{
z(1) = z(0) +

∫ 1

0
f(z(t), θ(t))dt “parent network”,

θ(t) = θ(0) +
∫ t
0
q(θ(t), p)dt, θ(0) = θ0 “weight network” .

Here, q(·) is a nonlinear operator (essentially controlling the dynamics of the network parameters in time); θ0
and p are the corresponding parameters for the weight network. Our approach allows θ to be time dependent:
θ(t) is parameterized by the learnable dynamics of dθ/dt = q(θ(t), p). This, in turn, is parameterized by θ0
and p. In other words, instead of optimizing for a constant θ, we optimize for θ0 and p. During inference, both
weights θ(t) and activations z(t) are forward-propagated in time by solving Eq. 1.2. Observe that if we set
q = 0 then we recover the Neural ODE approach proposed by [3, 4, 5, 6, 7, 8]. Eq. 1.2 replaces the problem of
designing appropriate neural network blocks (f) with the problem of choosing appropriate function (q) in an
ODE to model the changes of parameter θ (the weight network).

In summary, our main contributions are the following.
• We provide a general framework that extends Neural ODEs to a system of coupled ODEs which
allows the coupled evolution of both model parameters and activations. This coupled formulation
addresses the challenge with Neural ODEs, in that using more time steps or different discretization
schemes do not affect model’s generalization performance [9].

• We derive the optimality conditions for how backpropagation should be performed for the coupled
ODE formulation, using the so-called Karush–Kuhn–Tucker (KKT) conditions. In particular, we
implement the corresponding DTO approach, along with a checkpointing scheme presented in [9].

• We test the framework using multiple different residual models on CIFAR-10 by considering dif-
ferent coupled formulations. In particular, we show examples illustrating how a bio-physically
motivated reaction-diffusion-advection (RDA) ODE could be used to model the evolution of the
neural network parameters.

Our work fits into a rich literature on neural evolution research [10, 11, 12, 13, 14, 15, 16]. For example,
several approaches similar to ANODEV2 have been taken in the line of evolutionary computing, where an
auxiliary “child” network is used to generate the parameters for a “parent” network. This approach permits
the restriction of the effective depth that the activations must go through, since the parent network could have
smaller weight space than the child network. One example is HyperNEAT [17], which uses “Compositional
Pattern Producing Networks” (CPRNs) to evolve the model parameters [18, 19]. A similar approach using
“Compressed Weight Search” was proposed in [20]. A follow up work extended this approach by using
differentiable CPRNs [21]. The authors show that neural network parameters could be encoded through a
fully connected architecture. Another seminal work in this direction is [22, 23], where an auxiliary network
learns to produce “context-aware” weights in a recurrent neural network model.

A similar recent approach is taken in Hypernetworks [24], where model parameters are evolved through
an auxiliary learnable neural network. This approach is a special case of ANODEV2, which could be derived
by using a single time step discretization of Eq. 1.2, with a neural network for the evolution operator (denoted
by q and introduced in the next section).

Our framework is a generalization of these evolutionary algorithms, and it provides more flexibility for
modeling the evolution of the model parameters in time. For instance, we will show how RDA operators could
be used for the evolution operator q, with negligible increase in the model parameter size.

2. Methodology. In this section, we discuss the formulation for the coupled ODE-based neural network
model described above, and we derive the corresponding optimality conditions. For a typical learning problem,
the goal is to minimize the empirical risk over a set of training examples. Given a loss function `(·), we seek
to find weights, θ, such that:

(2.1) min
θ

1

N

N∑
i=1

`(z(θ;xi, yi)) +R(θ),

where R is a regularization operator, (xi, yi) is the ith training sample and its label, and N the number of
training samples. The loss function depends implicitly on θ through the network activation vector z. This
problem is typically solved using Stochastic Gradient Descent (SGD) and backpropagation to compute the
gradient of z with respect to θ.

2.1. Neural ODE. Consider the following notation for a residual block: z1 = z0 + f(z0; θ), where z0 is
the input activation, f(·) is the neural network kernel (e.g., comprising a series of convolutional blocks with
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non-linear or linear activation functions), and z1 is the output activation. As discussed above, an alternative
view of a residual network is the following continuous-time formulation: dz

dt = f(z(t); θ), with z(t = 0) = z0
(we will use both z(t) and zt to denote activation at time t). In the ODE-based formulation, this neural
network has a continuous depth. In this case, we need to solve the following constrained optimization problem
(Neural ODE):

(2.2) min
θ

1

N

N∑
i=1

`(z1;xi, yi) +R(θ) subject to:
dz

dt
= f(z(t), θ), z(0) = z0.

Note that in this formulation the neural network parameters do not change with respect to time. In
fact, it has been observed that using adaptive time stepping or higher order discretization methods such
as Runge-Kutta does not result in any gains in generalization performance using the above framework [9].
To address this, we extend the Neural ODEs by considering a system of coupled ODEs, where both the
model parameters and the activations evolve in time. This formulation is slightly more general than what we
described in the introduction. We introduce an auxiliary dynamical system for w(t), which we use to define
θ. This allows for more general evolution of the model parameters and activations, which will be discussed
in §2.2. In particular, we propose the following formulation:

min
p,w0

J (z(1)) =
1

N

N∑
i=1

`(z(1);xi, yi) +R(w0, p),(2.3a)

dz

dt
= f(z(t), θ(t)), z(0) = z0 “Activation ODE”,(2.3b)

∂w

∂t
= q(w; p), w(0) = w0 “Evolution ODE” ,(2.3c)

θ(t) =

∫ t

0

K(t− τ)w(τ)dτ.(2.3d)

Note that here θ(t) is a function of time, and it is parameterized by the whole dynamics of w(t) and a time
convolution kernel K (which in the simplest form could be a Dirac delta function so that θ(t) = w(t)). Also,
q(w, p) can be a general function, e.g., another neural network, a linear operator, or even a discretized Partial
Differential Equation (PDE) based operator. The latter is useful if we consider the θ(t) as a function θ(u, t),
where u parameterizes the signal space (e.g., 2D pixel space for images). This formulation allows for rich
variations of θ(t), while using a lower dimensional parameterization: notice that implicitly we have that
θ(t) = θ(w0, p, t). Also, this formulation permits novel regularization techniques. For instance, instead of
regularizing θ(t), we can regularize w0 and p.

A crucial question here is: how should one perform backpropagation for this formulation? It is instructive
to compute the actual derivatives to illustrate the structure of the problem. To derive the optimality conditions
for this constrained optimization problem, we need first to form the Lagrangian operator, and then we derive
the KKT conditions. Here is the Lagrangian:

L = J (z1) +

∫ 1

0

α(t) ·
(
dz

dt
− f(z(t), θ(t))

)
dt+

∫ 1

0

β(t) ·
(
∂w

∂t
− q(w; p)

)
dt

+

∫ 1

0

γ(t) ·
(
θ(t)−

∫ t

0

K(t− τ)w(τ)dτ

)
dt.

(2.4)

Here, α(t), β(t), and γ(t) are the corresponding adjoint variables (Lagrange multiplier vector functions) for
the constraints in Eq. 2.3. The solution to the optimization problem of Eq. 2.3 could be found by computing
the stationary points of the Lagrangian (the KKT conditions), which are the gradient of L with respect to
z(t), w(t), θ(t), p, w0 and the adjoints α(t), β(t), γ(t). The variations of L with respect to the three adjoint
functions just result in the ODE constraints in Eq. 2.3. The remaining variations of L are the most interesting
and are given below (please see Appendix E for the derivation):
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∂J (z1)

∂z1
+ α1 = 0, − ∂α

∂t
−
(
∂f

∂z

)T
α(t) = 0; (∂Lz)(2.5a)

−
(
∂f

∂θ

)T
α(t) + γ(t) = 0; (∂Lθ)(2.5b)

−∂β(t)

∂t
−
(
∂q

∂w

)T
β(t)−

∫ 1

t

KT (τ − t)γ(τ)dτ = 0, β(1) = 0; (∂Lw)(2.5c)

−β(0) +
∂R

∂w0
= gw0

; (∂Lw0
)(2.5d)

∂R

∂p
−
∫ 1

0

(
∂q

∂p

)T
β(t)dt = gp. (∂Lp)(2.5e)

To compute the gradients gp and gw0
(Eq. 2.5d and Eq. 2.5e), we proceed as follows. Given w0 and p, we

forward propagate w0 to compute w(t) and then θ(t). Then, using θ(t) we can compute the activations z(t).
Afterward, we need to solve the first adjoint equation for α(t) using the terminal condition of α1 = −∂J (z1)

∂z1
.

Having α(t) we can compute the second adjoint variable γ(t) from Eq. 2.5b. Lastly, we need to plug in
γ(t) into Eq. 2.5c to solve for β(t) which is the term needed to compute the gradients (by plugging it in
in Eq. 2.5d, Eq. 2.5e). We use the Discretize-Then-Optimize (DTO) method to find the gradients [9].

Notice that if we set q = 0 then we will derive the optimality conditions for the Neural ODE without
any dynamics for the model parameters, which was the model presented in [8]. The benefit of our more
general framework is that we can encapsulate the time dynamics of the model parameter without increasing
the memory footprint of the model. In fact, this approach only requires storing initial conditions for the
parameters, which are parameterized by w0, along with the parameters of the control operator q, which are
denoted by p. As we show in the results section (§3) the latter have negligible memory footprint, but yet
allow rich representation of model parameter dynamics.

PDE-inspired formulation. There are several different models one could consider for the q(w, p), the
evolution function for the neural network parameters. One possibility is to use an auxiliary neural network
such as the approach used in HyperNetworks [24]. However, this may increase the total number of parameters.
Inspired by Turing’s reaction-diffusion-advection partial differential equation models for pattern formation,
we view a convolutional filter as a time-varying pattern, where the NN parameters evolve in time [11]. To
illustrate this, we consider a PDE-based model for the control operator q, as follows:

(2.6)
dw

dt
= σ(d∆w + υ · ∇w + ρw),

where d is control diffusion (∆w), υ controls the advection/transport (∇w), ρ controls the reaction (w), and
σ is a nonlinear activation (such as sigmoid or tanh). Here, we are viewing the weights w as a time series
signal, starting from the initial signal, w0. This initial condition is then evolved in time to produce w1. In
fact, one can show that this formulation can evolve the initial parameters, w0, to any arbitrary weights w1, if
there exists a diffeomorphic transformation of between the two distributions (i.e., if there exists a velocity
field υ such w1 is the solution of Eq. 2.6, with initial condition w0 [25]).

Although this operator is mainly used as an example control block (i.e., ANODEV2 is not limited to
this model), the RDA operator can capture interesting dynamics for model parameter evolution. For instance,
consider a Gaussian operator for a convolutional kernel with unit variance as shown in Figure 3. A diffusion
operator can simulate multiple different Gaussian distributions with different variances in time. This requires
storing only a single diffusion parameter (i.e., the diffusion parmaeter d in Eq. 2.6). Another interesting
operator is the advection/transport operator which models species transport. For the Gaussian case, this
operator could transport the center of the Gaussian to different positions other than the center, as shown in
second row of Figure 3. Finally, the reaction operator could allow growth or decay of the intensity of the
convolution filters (third row of Figure 3). The full RDA operator could encapsulate more complex dynamics
of the neural network parameters in time. An synthetic example is shown in Figure 3 in the appendix, and a
real example (5× 5 convolutional kernel of AlexNet) is shown in Figure 1.

2.2. Two methods used in this paper. The motivation to introduce the auxiliary variable w in Eq. 2.3
is to enable different coupling configurations between model parameters, θ, and activations, z. We use two
different coupling configurations of ANODEV2 as described below.
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Fig. 1: Illustration of how different convolutional operators are evolved in time during the coupled neural
ODE solve (through the evolution operator q in Eq. 2.3c). The figure corresponds to the first channel of the
first convolution kernel parameters of AlexNet. These filters will be applied to activation in different time
steps (through the f operator in the coupled formulation in Eq. 2.3b). This is schematically shown in Figure 2
for three of the filters (the filters are denoted by different shades of brown bars denoted by θ). As the time step
increases, the kernel turns out to focus on some specific part on the activation map. Similar illustrations for
ResNet-4 and ResNet-10 are shown in Figure 4 and 5 in the appendix.

Configuration 1. Here, we use multiple time steps to solve for both z and θ in the network, instead of just
one time step as in the original ResNet. In this setting, we will alternatively update the value of z and θ
according to the following equation (for details, see Appendix B):

(2.7) zt0+δt = zt0 + δtf(zt0 ; θt0); θt0+δt = σ
(
F−1

(
exp((−dk2 + ikυ + ρ)δt)F (θt0)

))
.

where δt is the discretization time scale, and F is Fast Fourier Transform (FFT) operator. where t0 ∈
{0, 1/5, 2/5, 3/5, 4/5} in the forward solver.

If we use Nt time steps to solve the equation, the computational cost for an ODE block will be roughly
Nt times more expensive, compared to that for the original residual block (note the approach presented
in [8] also increases computational cost by the same Nt factor). This network can be viewed as applying Nt
different residual blocks in the network but with neural network weights that evolve in time. Note that this
configuration does not increase the parameter size of the original network, except for a slight overhead of d, υ
and ρ.

The configuration 1 is shown in Figure 2 (top), where the model parameters and activations are solved
with the same discretization scheme. This is similar to the Neural ODE framework of [8], except that the
model parameters are evolved in time, whereas in [8] the same model parameters are applied to the activations
(and only time horizon is changed). The dynamics of the model parameters are illustrated by different colors
used for the convolution kernels in top of Figure 2. This configuration is equivalent to using the Dirac delta
function for the K function in Eq. 2.3d.

In short, this configuration allows evolution of both the model parameters and activations, but both have
the same time discretization. While this is a simple configuration, but it is not very general, since the model
parameters may require more time to evolve and prematurely applying them to input activation may not be
optimal. The next configuration relaxes this constraint to addresses this limitation.

Configuration 2. ANODEV2 supports different coupling configurations between the dynamics of activa-
tions and model parameters. For example, it is possible to not restrict the dynamics of θ and z to align in
time, which is the second configuration that we consider. Here, we allow model parameters to evolve and
only apply to activations after a fixed number of time steps. For instance, consider the Gaussian example
illustrated in Figure 3 in Appendix A. In configuration 1, a residual block is created for each of the three time
steps. However, in configuration 2, we only apply the first and last time evolutions of the parameters (i.e., we
only use w0 and w1 to apply to activations as shown in Figure 2). This configuration allows sufficient time
for the model parameters to evolve, and importantly it limits the depth of the network that activations go



ANODEV2: A Coupled Neural ODE Evolution Framework 6

through. In this case, the depth of the network is increased by a factor of two, instead of Nt as in configuration
1 (which is the approach used in [8, 9]).

Both configuration 1 and configuration 2 are supported in ANODEV2, and we will present preliminary
results for both settings.
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...

Fig. 2: Illustration of different configurations in ANODEV2. The top figure shows configuration 1, where
both the activation z and weights θ are evolved through a coupled system of ODEs. During inference, we solve
both of these ODEs forward in time. Blue boxes in the figure represent activation with multiple channels; all
the bars (in different shades of brown) represent the convolution kernel evolving in time. The convolution
weights θ are computed by solving an auxiliary ODE. That is, at every time step, we solve both z and θ forward
concurrently. The bottom figure shows configuration 2, where first the weights are evolved in time before
applying them to the activations. Comparing to configuration 1, only the first and last weights are applied.

3. Results. In this section, we report the results of ANODEV2 for the two configurations discussed
in section 2, on the CIFAR-10 dataset, which consists of 60,000 32×32 colour images in 10 classes. The
framework is developed as a library in Pytorch, and it uses the checkpointing method proposed in [9], along
with the DTO formulation of the optimality conditions shown in Eq. 2.5.

We test ANODEV2 on AlexNet with residual connections, as well as two different ResNets. See Ap-
pendix B and Appendix C for the details of training settings and model architectures. We consider the two
coupling configurations between the evolution of the activations and model parameters, as discussed next.

3.1. Configuration 1. We first start with configuration 1, which is the same as the setting used in [8, 9].
The model parameters and activations are evolved in time concurrently and for each time step, as shown
in Figure 2 (top). All the experiments were repeated five times, and we report both the min/max accuracy as
well as the average of these five runs. The results are shown in Table 1.

Note that the coupled ODE based approach outperforms the baseline in all three of the statistical
properties (i.e., min/max/average accuracy). For example, on ResNet-10 the coupled ODE network achieves
89.04% average test accuracy, as compared to 88.10% of baseline, which is 0.94% better. Meanwhile, a
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noticeable observation is that the minimum performance of the coupled ODE based network is comparable
or even better than the maximum performance of baseline. The coupled ODE based AlexNet has 88.59%
minimum accuracy which is 1.44% higher than the best performance of baseline out of five runs. Hence, the
generalization performances of the coupled ODE based network are consistently better than those of the
baseline. It is important to note that the model parameter size of the coupled ODE approach in ANODEV2 is
the same as that of the baseline. This is because the size of the evolution parameters p in Eq. 2.3 is negligible
(please see Table 3).

Table 1: Results for using Nt = 5 time steps to solve z and θ in a neural network with configuration 1. We
tested on AlexNet, ResNet-4, and ResNet-10. We get 1.75%, 1.16% and 0.94% improvement over the baseline
respectively. Note that the model size of ANODEV2 and the baseline are comparable.

AlexNet ResNet-4 ResNet-10

Min / Max Avg Min / Max Avg Min / Max Avg

Baseline 86.84% / 87.15% 87.03% 76.47% / 77.35% 76.95% 87.79% / 88.52% 88.10%
ANODEV2 88.59% / 88.96% 88.78% 77.27% / 78.58% 78.11% 88.67% / 89.39% 89.04%
Imp. 1.75% / 1.81% 1.75% 0.80% / 1.23% 1.16% 0.88% / 0.87% 0.94%

The dynamics of how the neural network parameters evolve in this configuration are illustrated in Figure 1,
where we extract the first 5×5 convolution of AlexNet and show how it evolves in time. Here, Time represents
how long θ evolves in time, i.e., Time = 0 shows the result of θ(t = 0) and Time = 1 shows the result of
θ(t = 1). It can be clearly seen that the coupled ODE based method encapsulates more complex dynamics of
θ in time. Similar illustrations for ResNet-4 and ResNet-10 are shown in Figure 4 and 5 in Appendix C.

3.2. Configuration 2. Here, we test configuration 2, where the evolution of the parameters and the
activations could have different time steps. This means the parameter is applied only after a certain number
of time steps of evolution, i.e., not at every time step, which was the case in configuration 1. This effectively
reduces the network depth and the computational cost, and it allows sufficient time for the neurons to be
evolved, instead of naively applying them at each time step. An illustration for this configuration is shown
in Figure 2 (bottom). The results on AlexNet, ResNet4, and ResNet10 are shown in Table 2, where we again
report the min/max/average accuracy over five runs. As in the previous setting (configuration 1), here in
configuration 2, the coupled ODE based network performs better in all cases. The minimum performance of
the coupled ODE based network still is comparable or even better than the maximum performance of the
baseline. Although the overall performance of this configuration 2 is slightly worse than that of configuration
1, the computational cost is much less, due to the smaller effective depth of the network that the activations
go through.

Table 2: Results for using Nt = 2 time steps to solve z in neural network and Nt = 10 to solve θ in the
ODE block (configuration 2). ANODEV2 achieves 1.23%, 0.78% and 0.83% improvement over the baseline
respectively. Note that the model size is comparable to the baseline in Table 1.

AlexNet ResNet-4 ResNet-10

Min / Max Avg Min / Max Avg Min / Max Avg

Baseline 86.84% / 87.15% 87.03% 76.47% / 77.35% 76.95% 87.79% / 88.52% 88.10%
ANODEV2 88.1% / 88.33% 88.26% 77.23% / 78.28% 77.73% 88.65% / 89.19% 88.93%
Imp. 1.26% / 1.18% 1.23% 0.76% / 0.93% 0.78% 0.86% / 0.67% 0.83%

4. Ablation Study. In this section, we compare ANODEV2 to models with the same number of
parameters. In particular, we compare with the Neural ODE approach of [8]. As mentioned before, the
approach used in this paper to save memory results in numerical instability, and to allow for fair comparison,
we also compare with ANODE presented in [9], which addresses the instability problem. Precisely, we use two
time steps for the activation ODE (Eq. 2.3b) and ten time steps for the evolution of the model parameters
(Eq. 2.3c). The results are shown in Table 4.

As one can see, there is indeed benefit in allowing the model parameters to evolve in time. This is not
surprising, since it gives more flexibility to the neural network to evolve the model parameters. Also note that
the performance of the Neural ODE approach used in [8] is significantly worse than ANODE and ANODEV2.
The results remained the same despite hyper-parameter tuning. However, this is expected as the Neural ODE
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method in [8] may result in incorrect gradient information [9]. However, even addressing this instability with
ANODE results in suboptimal performance as compared to ANODEV2. Also note that evolving model
parameters has a negligible computational cost, since we can actually use analytical solutions for solving the
RDA, which is discussed in Appendix B.

We also present the parameter sizes of the both configurations of ANODEV2 as well as the Neural ODE
and ANODE models tested above. Table 3 summarizes all the results. It can be clearly seen that the model
sizes of both configurations are roughly the same as those of the baseline models. In fact, configuration 1
grows the parameter sizes of AlexNet, ResNet-4, and ResNet-10 by only 0.5% to 6.7%, as compared to those
of baseline models. In configuration 2, the parameter size increases from 0.2% to 3.6% compared to baseline
model. (Note that we even count the additional batch norm parameters for fair comparison.)

Table 3: Parameter comparison for two ANODEV2 configurations, Neural ODE, ANODE, and the baseline
network. The parameter size of ANODEV2 is comparable with the others.

AlexNet ResNet-4 ResNet-10

Baseline 1756.68K 7.71K 44.19K
Neural ODE [8] 1757.13K 7.96K 44.95K
ANODE [9] 1757.13K 7.96K 44.95K
ANODEV2 conf. 1 1757.51K 8.23K 45.77K
ANODEV2 conf. 2 1757.13K 7.99K 45.05K

Table 4: We use Nt = 2 time steps to solve for z in the neural network and keep θ as static for Neural ODE and
ANODE. We tested all configurations on AlexNet, ResNet-4 and ResNet-10. The results show that Neural ODE
get significantly worse results, compared to ANODEV2 (with Configuration 2) and ANODE. ANODEV2
gets 0.24%, 0.43% and 0.33% improvement over ANODE, respectively. The model size comparison is shown
in Table 3.

AlexNet ResNet-4 ResNet-10

Min / Max Avg Min / Max Avg Min / Max Avg

Baseline 86.84% / 87.15% 87.03% 76.47% / 77.35% 76.95% 87.79% / 88.52% 88.10%
NeuralODE [8] 74.54% / 76.78% 75.67% 44.73% / 49.91% 47.37% 64.7% / 70.06% 67.94%
ANODE [9] 87.86% / 88.14% 88.02% 76.92% / 77.45% 77.30% 88.48% / 88.75% 88.60%
ANODEV2 Conf. 2 88.1% / 88.33% 88.26% 77.23% / 78.28% 77.73% 88.65% / 89.19% 88.93%

5. Conclusions. The connection between residual networks and ODEs has been discussed in recent
work. Here, motivated by work in neural evolution, we propose ANODEV2, which is a more general extension
of this approach, obtained by introducing a coupled ODE based framework. The framework allows dynamical
evolution of both the residual parameters as well as the activations in a coupled ODE formulation. This
provides more flexibility to the neural network to adjust the parameters to achieve better generalization
performance. We derived the optimality conditions for this coupled formulation and presented preliminary
empirical results using two different configurations, and we showed that we can indeed train such models
using our differential framework. The results on three Neural Networks (AlexNet, ResNet-4, and ResNet-10)
all show accuracy gains across five different trials. In fact, the worst accuracy of the coupled ODE formulation
was better than the best performance of the baseline. This is achieved with negligible change in the model
parameter size. To the best of the our knowledge, this is the first coupled ODE formulation that allows for
the evolution of the model parameters in time along with the activations. We are working on extending the
framework for other learning tasks. The source code will be released as open source software to the public.
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Appendix A. Reaction-diffusion-advection (RDA) Simulation.
In this section, we provide details for the reaction-diffusion-advection (RDA) solver as well as an exemplary

simulation, shown in Figure 3. For an illustration of the idea, we set the initial distribution of θ to be a unit
Gaussian centered in the middle of the figure. In the first row, we show how this single modal Gaussian
changes in time when only a diffusion operator is used in the control operator. As shown in the first row of
the figure, the diffusion operator allows the parameters to evolve from a Gaussian with unit variance to a
Gaussian with higher variance. In the second row, we show how this single modal Gaussian changes with
an advection operator. Notice how the advection operator allows modeling of different filters centered at
different locations with the same variance (since advection operator does not diffuse filters but transports
them). In the third row, we show how this single modal Gaussian changes when we only use an exponential
growth operator for the reaction part. Notice how this operator could allow the kernel to increase/decrease its
intensities at different pixels in time. Finally, in the last row, we show a more complex example, where we use
all three operators together.

Diffusion, Time = 0.00 Diffusion, Time = 0.33 Diffusion, Time = 0.67

Advection, Time = 0.00 Advection, Time = 0.33 Advection, Time = 0.67

Reaction, Time = 0.00 Reaction, Time = 0.33 Reaction, Time = 0.67

RDA, Time = 0.00 RDA, Time = 0.33 RDA, Time = 0.67
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Fig. 3: Illustration of how different convolution maps could be encoded through the parameter PDE solver.
Here, we show an exemplary convolution at time t = 0 (left images), as well as its evolution through time,
when we apply the RDA PDE with different settings for the model parameters. Note that with this PDE based
encoding, we only need to store the initial condition for the parameters (i.e., t = 0). The rest of the model
parameters could be computed using this initial condition.

Appendix B. Numerical Method.
In this section, we provide more details on our numerical techniques. For simplicity, we set K to be a
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Dirac delta function, and we use the above RDA function for q(w, p). In this case, we have

(B.1)

{
dz
dt = f(z; θ),
dw
dt = σ(d∆w + υ · ∇w + ρw).

Here, we discuss how can we solve the ODE system, given in Eq. B.1. For the evolution of z, we follow [9]
and use forward Euler method to solve z. For example, if we set time step Nt to be 2, then

z1/2 = z0 +
1

2
f(z0; θ0); z1 = z1/2 +

1

2
f(z1/2; θ1/2).

It is not hard to see that if Nt = 1, then the output is the same as the original ResNet. For the evolution of
θ without non-linearity, i.e., when σ is the identity map, there exists an analytic solution in the frequency
domain. Applying the Fast Fourier Transform (FFT) from Eq. 2.6, we will get:

(B.2) F (w)t = F (d∆w + υ · ∇w + ρw),

where F (·) denotes FFT operator. Since the diffusion, advection, and reaction coefficients are constant, we
can find the analytical solution in the frequency domain. That is:

(B.3) wt0+δt = F−1
(

exp(−δtdk2 + ikδtυ + δtρ)F (wt0)
)
,

where F−1 is inverse FFT. Note that due to the existence of this analytical solution, the computational cost
of solving the evolution for θ becomes negligible, which is an important benefit of this approach.

When a non-linearity is applied, we use an approximation to solve Eq. 2.6, obtaining

(B.4) wt0+δt = σ
(
F−1

(
exp(−δtdk2 + ikδtυ + δtρ)F (wt0)

))
.

This means we first apply FFT and its inverse to solve the linear system, and then we apply the non-linear
function σ. Here, δt means the time scale to compute θ. In this paper, we set the non-linearity function σ to
be tanh, but other non-linearities could also be used.

For configuration 1, we use Nt = 5. For configuration 2, we use Nt = 2 to solve z and Nt = 10 to solve
θ. In this case, the FLOPS will be only 2× that of the original baseline network. Upon this condition, the
process can be formulated as,

z1/2 = z0 +
1

2
f(z0; θ0); z1 = z1/2 +

1

2
f(z1/2; θ1);

where θ1 is generated with δt = 1/10.

Appendix C. Model Configuration.
In this section, we provide the architecture we used for the tests in section 3. The AlexNet, ResNet-4,

and ResNet-10 we are using are described in following sections.

C.1. AlexNet. We used a 2-layer convolution with residual connection added to the second convolution.
Thus, we can transform the second convolution into an ODE. Table 5 explains detailed structure layer by
layer. For simplicity, we omit the batch normalization and ReLU layer added after each convolution.

Training details. We train AlexNet for 120 epochs with initial learning rate 0.1. The learning rate decays
by a factor of 10 at epoch 40, 80 and 100. Data augmentation is implemented. Also, the batch size used
for training is 256. Note that the setting is the same for all experiments, i.e., baseline, Neural ODE, and
ANODEV2.

C.2. ResNet-4 and ResNet-10. Here, we provide the architecture of ResNet-4 and ResNet-10 used
section 3. We omit the batch normalization and ReLU, for simplicity. Detailed structure is provided in Table 6.

Training details. We train ResNet-4/10 for 350 epochs with initial learning rate 0.1. The learning rate
decays by a factor of 10 at epoch 150, and 300. Data augmentation is implemented. Also, the batch size
used for training is 256. Note that the setting is the same for all experiments, i.e., baseline, Neural ODE,
and ANODEV2.

Appendix D. Convolution kernel Evolution Example.
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Fig. 4: Illustration of how different convolutional operators are evolved in time during the coupled neural
ODE solve (through the evolution operator q in Eq. 2.3c). The figure corresponds to the first channel of the
first convolution kernel parameters of ResNet-4. These filters will be applied to activation in different time
steps (through the f operator in the coupled formulation in Eq. 2.3b). This is schematically shown in Figure 2
for three of the filters (the filters are denoted by different shades of brown bars denoted by θ). Similar pattern
can be observed as Figure 1.
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Fig. 5: Illustration of how different convolutional operators are evolved in time during the coupled neural
ODE solve (through the evolution operator q in Eq. 2.3c). The figure corresponds to the first channel of the
first convolution kernel parameters of ResNet-10. These filters will be applied to activation in different time
steps (through the f operator in the coupled formulation in Eq. 2.3b). This is schematically shown in Figure 2
for three of the filters (the filters are denoted by different shades of brown bars bars denoted by θ). Similar
pattern can be observed as Figure 1.
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Table 5: Summary of the architecture used in AlexNet. This is a 2-convolution network with residual
connection added to the second convolution, followed by three fully connected layer.

Name output size Channel In / Out Kernel Size Residual

conv1 32×32 3 / 64 5×5 No
max pool 16×16 64 / 64 - -

conv2 16×16 64 / 64 5×5 Yes
max pool 8×8 64 / 64 - -

Name input size output size

fc1 4096 384
fc2 384 192
fc3 192 10

Table 6: Summary of the architecture used in ResNet-4 and ResNet-10. ResNet-10 is a ResNet family that
has 2 layers with 2 residual blocks in each layer. ResNet-4 has only 1 layer with only 1 residual block inside.

Name output size Channel In / Out Kernel Size Residual Blocks(ResNet-4 / ResNet-10)

conv1 32×32 3 / 16 3×3 No 1 / 1

layer1_1 32×32 16 / 16
[ 3×3 ]

Yes 1 / 13×3

layer1_2 32×32 16 / 16
[ 3×3 ]

Yes 0 / 13×3

layer2_1 16×16 16 / 32
[ 3×3 ]

Yes 0 / 13×3

layer2_2 16×16 32 / 32
[ 3×3 ]

Yes 0 / 13×3

Name Kernel Size Stride Output Size (ResNet-4/ResNet-10)

max pool 8×8 8 4×4 / 2×2

Name input size (ResNet-4/ResNet-10) output size

fc 256 / 128 10

In this section, we show some examples of how the model parameters θ are evolved in time. Results for
ResNet-4 and ResNet-10 are shown in Figure 4 and Figure 5, respectively.

Appendix E. Derivation of Optimality Conditions.
In this section, we present a detailed derivation of the optimality conditions corresponding to Eq. 2.3. We

need to find the so-called KKT conditions, which can be found by finding stationary points of the corresponding
Lagrangian, defined as:

L = J (z1) +

∫ 1

0

α(t) ·
(
dz

dt
− f(z(t), θ(t))

)
dt+

∫ 1

0

β(t) ·
(
∂w

∂t
− q(w, p)

)
dt

+

∫ 1

0

γ(t) ·
(
θ(t)−

∫ t

0

K(t− τ)w(τ)dτ

)
dt

(E.1)

In order to derive the optimality conditions, we first take variations with respect to α(t), β(t), and γ(t).
This basically results in the “Activation ODE”, the “Evolution ODE”, and the relation between θ(t) and w(t),
shown in Eq. 2.3. Taking variations with respect to z(t) will result in a backward-in-time ODE for the α(t),
which is continuous equivalent to backpropagation (i.e., Optimize-Then-Discretize). Taking variations with
respect to θ will result in an algebraic relation between α(t) and γ(t). Taking variations with respect to
w(t) will be split in two parts: variations with respect to w(t) for t > 0; and variations with respect to w(0),
which is in fact one of our unknown parameters. The split is performed by first integrating by parts the∫ 1

0
β(t)∂w(t)

∂t dt term to expose a term that reads β(1)w(1)− β(0)w0, and then taking variations with respect
to w0. Finally, we also need to take variations with respect to the vector p. An important technical detail
is that to take the variations of the

∫ 1

0
γ(t) ·

∫ t
0
K(t − τ)w(τ)dτdt with respect to w can be done easily by

converting it to
∫ 1

0
γ(t) ·

∫ 1

0
H(τ − t)K(t− τ)w(τ)dτdt. The details are given below.
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In order to satisfy the first optimality condition on z we have:(
∂L
∂z

)T
ẑ = 0,

where this equality must hold for any variation ẑ in space and time. We have:(
∂L
∂z

)T
ẑ =

(
∂J (z1)

∂z1

)T
ẑ1 + αT1 ẑ1 +

∫ 1

0

(
−∂α
∂t
− ∂f(z, θ)

∂z

T

α

)T
ẑdt = 0.(E.2)

Imposing this condition holds for all variation ẑ will result in the first adjoint equation as follows:

(E.3)
∂J (z1)

∂z1
+ α1 = 0, − ∂α

∂t
−
(∂f
∂z

)T
α = 0.

For θ, the following equation needs to be satisfied:(
∂L
∂θ

)T
θ̂ = 0.

We have

(E.4)
(
∂L
∂θ

)T
θ̂ =

∫ 1

0

(
−∂f(z, θ)

∂θ

)T
αT θ̂dt+

∫ 1

0

γT θ̂dt.

This further implies:

(E.5) − ∂f(z, θ)

∂θ

T

α+ γ = 0.

Finally, the inversion equation on w could be found by performing variation on w:(
∂L
∂w

)T
ŵ = 0.

We have (
∂L
∂w

)T
ŵ =

∫ 1

0

−

(
∂β

∂t
− ∂q(w; p)

∂w

T

β

)T
ŵdt

+ βT1 ŵ1 +

∫ 1

0

∫ t

0

−H(τ − t)KT (t− τ)γdτŵdt

=

∫ 1

0

−

(
∂β

∂t
− ∂q(w; p)

∂w

T

β

)T
ŵdt

+ βT1 ŵ1 +

∫ 1

0

∫ t

0

−H(τ − t)KT (t− τ)γdτŵdt,

(E.6)

where H is the scalar Heaviside function. Imposing that this condition holds for all variation ŵ will result in
the inversion equation as follows,

(E.7) − ∂β

∂t
− ∂q(w; p)

∂w

T

β +

∫ 1

t

−KT (t− τ)γdτ, β1 = 0.

The gradient of L with respect to w0 can be computed as,

gw0 =
∂L
∂w0

=
∂R(w0, p)

∂w0
− β0.(E.8)

Finally, the gradient of L with respect to p can be computed as,

gp =
∂L
∂p

=
∂R(w0, p)

∂p
−
∫ 1

0

∂q(w, p)

∂p

T

β(t)dt.(E.9)

Note that if optimality conditions are achieved with respect to w0 and p, then

(E.10) gw0
= 0, gp = 0.


