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Abstract. We propose a segmentation framework that uses deep neural
networks and introduce two innovations. First, we describe a biophysics-
based domain adaptation method. Second, we propose an automatic
method to segment white and gray matter, and cerebrospinal fluid, in
addition to tumorous tissue. Regarding our first innovation, we use a
domain adaptation framework that combines a novel multispecies bio-
physical tumor growth model with a generative adversarial model to
create realistic looking synthetic multimodal MR images with known
segmentation. Regarding our second innovation, we propose an auto-
matic approach to enrich available segmentation data by computing the
segmentation for healthy tissues. This segmentation, which is done using
diffeomorphic image registration between the BraTS training data and
a set of prelabeled atlases, provides more information for training and
reduces the class imbalance problem. Our overall approach is not specific
to any particular neural network and can be used in conjunction with
existing solutions. We demonstrate the performance improvement using
a 2D U-Net for the BraTS’18 segmentation challenge. Our biophysics
based domain adaptation achieves better results, as compared to the
existing state-of-the-art GAN model used to create synthetic data for
training.

Keywords: Segmentation, Neural Network, Machine Learning, Glioblas-
toma Multiforme, tumor growth models, image registration

1 Introduction

Automatic segmentation methods have the potential to provide accurate and
reproducible labels leading to improved tumor prognosis and treatment planning,
especially for cases where access to expert radiologists is limited.

In the BraTS competition, we seek to segment multimodal MR images of
glioma patients. Common brain MRI modalities include post-Gadolinium T1
(used to enhance contrast and visualization of the blood-brain barrier), T2 and
FLAIR (to highlight different tissue fluid intensities), and T1. We use the data
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for these four modalities to generate the segmentations using a methodology
that we outline below.

Contributions: In most image classification tasks deep neural networks (DNNs)
have been a very powerful technique that tends to outperform other approaches
and BraTS is no different. From past BraTS competitions two main DNN ar-
chitectures have emerged: DeepMedic [14] and U-Net [19]. How can we further
improve this approach? Most research efforts have been on further improving
these architectures, as well as coupling them with post-processing and ensem-
ble techniques. In our work here, we propose a framework to work around the
relatively small training datasets used in the BraTS competition. Indeed, in
comparison to other popular classification challenges like ImageNet [4] (which
consists of one million images for training), the BraTS training set contains only
285 instances (multimodal 3D MR images), a number that is several orders of
magnitude smaller than the typical number of instances required for DNNs to
work well. These observations have motivated this work, whose contributions we
summarize below.

(a) (b) (c)

Fig. 1: Domain adaptation results: (a) represents a synthetic FLAIR brain image,
(b) represents the domain adapted synthetic FLAIR image, (c) represents the
real BraTS FLAIR image. As we can see from the intensity distributions, the
values in the adapted images are qualitatively closer to the real images.

1. Data augmentation: We propose a biophysics based domain adaptation
strategy to add synthetic tumor-bearing MR images to the training exam-
ples. There have been many notable works to simulate tumor growth (see
[5–7, 9, 12, 18]). We use an in-house PDE based multispecies tumor growth
model [21] to simulate synthetic tumors. Since simulated data does not con-
tain the correct intensities distribution of a real MR image, we train an
auxiliary neural network to transform the simulated images to match real
MRIs. This network gets a multimodal input and transforms this data to
match the distribution of BraTS images by imposing certain cycle consis-
tency constraints. As we will show, this is a very promising approach.
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2. Extended segmentation: We extend the segmentation to the healthy
parenchyma. This is done in two steps. First, we segment the training dataset
using an atlas-based ensemble registration (using an in-house diffeomorphic
registration code). Second, we train our DNN network to segment both tu-
mor and healthy tissue (four classes, glial matter, cerebrospinal fluid, gray,
and white matter). Our approach adds important information about healthy
tissue delineation, which is actually used by radiologists. It also reduces the
inherent class imbalance problem.

Our data augmentation is different than the recent work of [20], which uses
GANs to automatically generate data. To the best of our knowledge, our work
here is the first to use a biophysics based domain adaptation framework for
automatic data generation, and our approach achieves five percentage points
higher dice score as compared to [20], even though we use a 2D neural network
architecture (which has suboptimal performance as compared to 3D network
used in [20]).

Related work: Recently, deep learning approaches using convolutional neural
networks (CNNs) have demonstrated excellent performance in semantic segmen-
tation tasks in medical imaging. Seminal works for segmentation stem from fully-
convolutional networks (FCNs) [13]. U-Net [19] is another popular architecture
for medical segmentation, which merges feature maps from the contracting path
of an FCN to its expanding path to preserve local contextual information. Multi-
scale information is often incorporated by using parallel convolutional pathways
of various resolutions [11] or by using dilated convolutions and cascading network
architectures [22]. Post-processing and ensemble methods are also usually used
after training with these models. The most commonly used post processing step
is Conditional Random Fields (CRF) [11], which has been found to significantly
reduce false positives and sharpen the segmentation. Ensembling is also very
important to reduce overfitting with deep neural networks. The winning algo-
rithm of the Multimodal Brain Tumor Image Segmentation Benchmark (BraTS)
challenge in 2017 was based on Ensembles of Multiple Models and Architectures
(EMMA) [10], which bagged a heterogeneous collection of networks (including
DeepMedic (winner of ISLES 2015 [14]), U-Nets and FCNs) to build a robust
and generic segmentation model.

There are established techniques to address training with small datasets, such
as regularization, or ensembling, which was the approach taken by the winning
team of BraTS’17. However, in this paper we propose an orthogonal method to
address this problem.

Limitations: Currently, our framework only supports 2D domain transfor-
mations. Hence, we are limited to transforming 3D brains slice-by-slice and us-
ing only 2D neural network architectures. This is sub-optimal as 3D CNNs can
demonstrably utilize volumetric medical imaging data more efficiently leading
to better and more robust performance (see [8, 10, 11]). Hence, extending our
framework to 3D is the focus of our future work and can potentially lead to
greater improvements in performance.
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The outline of the paper is as follows. In §2, we discuss the methodology
for domain adaptation (§2.1), and the whole brain segmentation (§2.2) . In §3
we present preliminary results for the BraTS’18 challenge [1–3,14]. Our method
achieves a Dice score of [79.15,90.81,81.91] for enhancing tumor, whole tumor
and tumor core, respectively for the BraTS’18 validation dataset.

2 Methods

2.1 Domain Adaptation

As mentioned above, one of the main challenges in medical imaging is the scarcity
of training data. To address this issue, we use a novel domain adaptation strat-
egy and generate synthetic tumor-bearing MR images to enrich the training
dataset. This is performed by first solving an in-house PDE based multispecies
tumor model using an atlas brain [21]. This model captures the time evolution
of enhancing and necrotic tumor concentrations along with tumor-induced brain
edema. The governing equations for the model are reaction-diffusion-advection
equations for the tumor species along with a diffusion equation for oxygen and
other nutrients. We couple this model with linear elasticity equations with vari-
able elasticity material properties to simulate the deformation of surrounding
brain tissue due to tumor growth, also known as “mass effect”. However, this
data cannot be used directly due to the difference in intensity distributions be-
tween a BraTS MRI scan and a synthetic MRI scan. Directly using synthetic
data during the training process will adversely guide the neural network to learn
features which do not exist in a real MR image, resulting in poor performance.

To address this issue, we use CycleGAN [23] to perform domain adaptation
from the generated synthetic data to the real BraTS images. This is done by
learning a mapping G : X → Y such that the distribution of images from G(X)
is indistinguishable from the distribution Y using an adversarial loss, as shown
in Fig. ??. Here, X is the simulated tumor data, and Y is the corresponding data
which matches the BraTS distribution. Because this mapping is highly under-
constrained, it is coupled with an inverse mapping F : Y → X and a cycle
consistency loss is introduced to enforce F (G(X)) ≈ X (and vice versa).

For training the domain adaptation network, we first computationally simu-
late synthetic tumors in a healthy brain atlas, located approximately at the whole
tumor center taken from each BraTS image. Hence, every synthetic tumorous
brain is paired with the corresponding data from a real BraTS image. Then, we
perform a pre-processing step to transform our synthetic results to intensities.
We produce a segmentation map for every tissue (healthy and tumorous) class
and sample intensities for each class from a real MRI scan. We assign these sam-
pled intensities to every voxel in our synthetic segmentation map to finally obtain
our synthetic MRI scans. Then, we train with these pre-processed synthetic MRI
scans and their corresponding BraTS images. Samples of our adaptation results
are shown Fig. 1, which demonstrate an almost indistinguishable adaptation of
the simulated data with the real images.
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Fig. 2: (Top row): The original T1ce image for Brats18 TCIA02 135 1 training
data is shown for different views (axial, coronal and sagittal). (Bottom row):
The corresponding extended segmentation for healthy cells computed by solving
a 3D registration problem with a segmented atlas. We overlay the BraTS tumor
segmentation with the registered segmentation to get the final results.
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2.2 Whole Brain Segmentation With Healthy Tissues

Fig. 3: (Top row): The original T1ce validation MR-image for
Brats18 CBICA ABT 1 data is shown for different views (axial, coronal
and sagittal). (Bottom row): The corresponding segmentation result for healthy
cells computed by the neural network.

An orthogonal approach that we propose for data augmentation, is an ex-
tended segmentation BraTS training data. That is, we segment the healthy
parenchyma int gray/white matter, cerebrospinal fluid, and glial cells. The delin-
eation of these healthy tissues contain important information which is actually
used by radiologists. For example, the delineation of the tissues could be com-
pressed due to tumor growth in the confined space of the brain. Providing this
information to the classifier can help in better segmenting tumorous regions.
However, such data is not readily available in the BraTS training dataset, since
labelling the tumorous regions itself is laborious, let alone annotating full healthy
tissues which is orders of magnitude more time consuming. We propose a novel
automated approach to compute this information through image registration. In
our method, we only need one (or preferably a few) fully segmented brains. Then
given an input 3D brain, we perform the following automatic steps to obtain the
extended segmentation:

1. Affine registration of each atlas image to the brats image.
2. Diffeomorphic registration of each atlas image to the BraTS image: This step

aims to find a deformation map that would “translate” a healthy atlas to
match the structure of a given BraTS training example. We compute this
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Fig. 4: Box plot for the final model’s dice score on the BraTS’18 validation data
is shown. This model achieves a mean dice score of (79.15,90.81,81.91) percent
for (WT,TC,EN), respectively.

deformation by solving a PDE-constrained optimization problem. We refer
to [15–17] for details on solving this optimization problem.

3. Majority voting to fuse labels of all deformed atlases to get the final healthy
tissue segmentation: The votes are weighted with the quality of diffeomorphic
registration measured by the L2 norm of the residual between each deformed
atlas and brats image. This ensures the highest weight for the deformed atlas
closest to the BraTS image.

We show an exemplary segmentation for an MRI scan from the BraTS train-
ing data in Fig. 2.

3 Results

Here, we report our segmentation results on BRATS’18 dataset.

Baseline network for healthy and tumor segmentation We first obtain
the healthy tissue segmentation for all the BraTS training data using the image
registration method discussed above, and use the fine grained data to train
a neural network. Given that our current domain adaptation framework only
supports 2D transformations, we follow a two stage segmentation routine using
both a 3D and a 2D UNet. The 3D U-Net has ten layers with multiclass dice loss
(based on the works of [8], implemented in TensorFlow/Keras) as the baseline
network to localize the tumor. Then we train a second 2D U-Net with the domain
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Table 1: We report the BraTS’18 results for our method for both the baseline
model and the final 2D network. Our final submission to the validation portal
is highlighted. The last row shows the dice scores for BRaTS’18 testing dataset.
Even though we use a sub-optimal 2D network, but we can still achieve significant
improvement with the proposed framework.

Dice Score
EN WT TC

Baseline (Validation) 73.86 89.49 79.94
Proposed (Validation) 79.15 90.81 81.91

Proposed (Testing) 70.96 87.11 76.87

adaptation results to obtain the final segmentation. The training is performed
for 500 epochs using a five-fold validation split of the training data with ADAM
optimizer and ensemble the splits to obtain the baseline results. We show the
healthy segmentation for a validation MRI scan in Fig. 3.

Data augmentation through domain adaptation In order to avoid noisy
segmentations and reduce the class imbalance inherent in the BraTS dataset, we
create crops of the tumor regions in every slice and use them for training. During
testing, we use the segmentation generated by our baseline 3D model to create
crops around the whole tumor. We use fixed sizes for our crops (specifically
48 × 48, 96 × 96 and 144 × 144). This is to ensure no loss of information due
to strided operations when we go deeper in the neural network. We train three
U-Nets corresponding to the axial, sagittal or coronal view of the MRI scan
and ensemble them (similar to the multi view fusion method outlined in [22]).
As before, we train five-fold cross-validation splits and ensemble them to avoid
overfitting to the training data.

To augment our data with domain adaptation results, we simulate a synthetic
tumor in our atlas corresponding to the whole tumor center of mass of every
BraTS training image. We transfer the synthetic brain to the BraTS domain for
every axial slice. Hence, our augmented dataset consists of approximately twice
the amount of training brains. Our final neural network is the 2D multiview
(MV) U-Net with masks generated using the baseline and data augmentation
using domain adaptation.

Results We trained the framework using the BraTS’18 data. The fine-grained
segmentation result from the first stage 3D U-Net is shown in Fig. 3. As one can
see, this involves both the tumor segmentation, shown in red/yellow/green, as
well as healthy structure of the brain shown in purple/cyan/gray. This data is
used for localizing the tumor boundaries. We then use this data and create mul-
tiview slices around the tumor bearing region. The multiviews include the three
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directions of axial, sagittal, and coronal directions. Then, this data is passed
through the second stage 2D U-Net which was trained along with the domain
adaptation data, and fused together to obtain the final segmentation as shown
in Fig. 5.

We show quantitative values for the Dice score in Tab. 1, with the corre-
sponding box plots shown in Fig. 4. The baseline network has a dice score of
[73.86,89.49,79.94] for Enhancing Tumor (ET), Whole Tumor (WT), and Tu-
mor Core (TC). Using our proposed data augmentation framework leads to a
dice score of [79.15,90.81,81.91]. These could be further improved by using a 3D
network instead of a 2D one, by developing a 3D domain adaptation framework
which is part of our future work.

Fig. 5: (Top row): The original T1ce validation MR-image for
Brats18 CBICA AAM 1 data is shown for different views (axial, coronal
and sagittal). (Bottom row): The corresponding tumor segmentation result
from the final 2D network.

4 Conclusion

We presented a new framework for biophysics-based medical image segmenta-
tion. Our contributions include an automatic healthy tissue segmentation of the
BraTS dataset, and a novel Generative Adversarial Network to enrich the train-
ing dataset using a model to generate synthetic phenomenological structures
of a glioma. We demonstrated that our approach yields promising results on
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the BraTS’18 validation dataset. Our framework is not specific to a particular
model, and could be used with other proposed neural networks for the BraTS
challenge.
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